首页> 外文学位 >Experimental investigation and simulation of a fluidized-bed gasifier using switchgrass.
【24h】

Experimental investigation and simulation of a fluidized-bed gasifier using switchgrass.

机译:柳枝switch流化床气化炉的实验研究与仿真。

获取原文
获取原文并翻译 | 示例

摘要

The overall goal of this research was to improve and optimize yield and composition of syngas generated from biomass gasification using an autothermal lab-scale fluidized-bed gasifier, and to develop a biomass gasification model to predict the syngas composition. The first objective was to design, develop and experimentally optimize the equivalence ratio (ER) of a 5 kg/h lab-scale fluidized-bed gasifier using switchgrass as a biomass feedstock. The ER of 0.32 was found to be optimal with the maximum syngas heating value of 6.6 MJ/Nm3, and cold and hot gas efficiencies of 71 and 75%, respectively. Our next objective was to investigate the effects of bed-materials (i.e. a mixture of sand, switchgrass and gasifier solid residues (GSR)) on fluidization characteristics (minimum fluidization velocity and bed-pressure drop) that are critical for optimizing reaction conditions in a fluidized-bed gasifier. Results showed that the fluidization characteristics were found to be strongly dependent upon mixture's effective properties, which were determined using properties of all mixture components. GSR and switchgrass present in the mixture had a highly significant (p-value < 0.001) influence on fluidization. Then, the syngas yield was further improved by optimizing steam injection location into the gasifier. Steam injection locations of 51, 152, and 254 mm above the distributor plate and steam-to-biomass ratios (SBRs) of 0.1, 0.2, and 0.3 were selected. The best syngas yields (0.018 kg H2/kg biomass and 0.513 kg CO/kg biomass) and gasifier efficiencies (cold gas efficiency of 67%, hot gas efficiency of 72%, and carbon conversion efficiency of 96%) were obtained at the steam injection location of 254 mm and SBR of 0.2. Finally, biomass gasification models, using three modeling approaches, i.e. Gibbs equilibrium, reaction kinetics and computational fluid dynamics (CFD) with reaction kinetics, were developed and validated with experimental results. Results showed that reaction kinetics and CFD models with reaction kinetics showed considerable improvements in the prediction of syngas composition and yield, as well as gasification energy efficiency compared to the Gibbs equilibrium model. Further, the CFD model also revealed insight about distribution of syngas constituents, temperature and dominating reactions within the gasifier.
机译:这项研究的总体目标是使用自热实验室规模的流化床气化炉提高和优化生物质气化产生的合成气的产率和组成,并开发生物质气化模型来预测合成气的组成。第一个目标是设计,开发和实验优化以柳枝as作为生物质原料的5 kg / h实验室规模流化床气化炉的当量比(ER)。发现ER为0.32是最佳的,最大合成气发热量为6.6 MJ / Nm3,冷气和热气效率分别为71%和75%。我们的下一个目标是研究床料(即沙子,柳枝and和气化炉固体残渣(GSR)的混合物)对流化特性(最小流化速度和床压降)的影响,这对于优化反应器中的反应条件至关重要。流化床气化炉。结果表明,发现流化特性强烈依赖于混合物的有效特性,而混合物的有效特性是使用所有混合物组分的特性确定的。混合物中存在的GSR和柳枝switch对流态化具有非常显着的影响(p值<0.001)。然后,通过优化注入气化炉的蒸汽位置进一步提高了合成气的产率。选择在分配板上方51、152和254毫米的蒸汽注入位置,并选择0.1、0.2和0.3的蒸汽生物量比(SBR)。在蒸汽中获得了最佳的合成气产率(0.018 kg H2 / kg生物质和0.513 kg CO / kg生物质)和气化炉效率(冷气效率为67%,热气效率为72%,碳转化效率为96%)。注射位置为254毫米,SBR为0.2。最后,利用三种模型方法,即吉布斯平衡,反应动力学和具有反应动力学的计算流体动力学(CFD),开发了生物质气化模型,并用实验结果进行了验证。结果表明,与Gibbs平衡模型相比,反应动力学和具有反应动力学的CFD模型在合成气组成和产率以及气化能量效率的预测方面显示出显着改进。此外,CFD模型还揭示了关于气化炉内合成气成分分布,温度和主要反应的见解。

著录项

  • 作者

    Sharma, Ashokkumar M.;

  • 作者单位

    Oklahoma State University.;

  • 授予单位 Oklahoma State University.;
  • 学科 Engineering Environmental.;Alternative Energy.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号