首页> 外文学位 >Coal conversion experimental methods for validation of pressurized entrained-flow gasifier simulation.
【24h】

Coal conversion experimental methods for validation of pressurized entrained-flow gasifier simulation.

机译:煤转化实验方法用于验证加压气流床气化炉模拟。

获取原文
获取原文并翻译 | 示例

摘要

Gasification of coal provides society with electricity, commodity chemicals, substitute natural gas, and consumer products. With the continued use of coal in the United States and abroad, the utilization of this fuel must be optimized with the aid of continued research on laboratory, pilot, and industrial scales in addition to responsible government regulation and legislation.;This study aims to forge a relationship between laboratory measurements and gas-phase data collected from a pressurized entrained-flow gasifier. Experiments utilizing a wire-mesh reactor and thermogravimetric analyzer lay the groundwork for extracting hot, pressurized gases from an entrained-flow gasifier by using a novel sampling system developed as part of the work presented here. Models for entrained-flow gasification of coal complement the experimental endeavors and aid in data analysis.;A novel pressurized wire-mesh reactor was used to determine the extent to which temperature, pressure, hold time, and heating rate influence coal devolatilization and associated char yields. Pressurized thermogravimetric studies were performed to determine the influence of pressure and gas composition on char conversion rates under a range of partial pressures of carbon monoxide and carbon dioxide. The resulting yields and devolatilization rates measured in the pressurized wire mesh heater and char conversion rates from the thermogravimetric analyzer were used to create a model for the entrained-flow gasifier and predict useful synthesis gas and gasification metrics. To sample the reaction zone of the gasifier, a sample system was fabricated, allowing for radial measurements of gas composition at variable operating conditions.;Key laboratory-scale results indicate that volatiles yields increase with temperature and hold time (residence time), and decrease with pressure, but to a lesser degree. During char gasification, high pressures were concluded to decrease the gasification rate, which was further inhibited by higher carbon monoxide partial pressures. Pilot-scale data show that syngas compositions change with temperature and carbon monoxide and hydrogen yields decrease as temperature increases. Conversely, higher temperatures increase carbon dioxide yields. A significant conclusion is that gas concentrations do not change radially in the pilot-scale entrained-flow gasifier. Correlations of laboratory-scale data provide a context for data acquired during the pilot-scale gasifier operation in addition to modeling endeavors. A developed additive reaction model characterizes char burnout characteristics and extends to devolatilization behavior and drying. This model yields residence times that corresponds within an order of magnitude to a one-dimensional model that tracks syngas composition, residence time, and coal conversion as a function of gasifier length. These results agree within 50% of the experimental data acquired from the entrained-flow gasifier at temperatures above 2650 °F (1438 °C) and is recommended as a tool to predict gasifier behavior and metrics.
机译:煤炭的气化为社会提供电力,日用化学品,替代天然气和消费产品。随着美国和国外煤炭的继续使用,除负责任的政府法规和立法外,还必须在实验室,中试规模和工业规模上继续进行研究,以优化这种燃料的利用。实验室测量值与从加压气流床气化炉收集的气相数据之间的关系。利用金属丝网反应器和热重分析仪进行的实验奠定了基础,该基础工作是通过使用一种新颖的采样系统开发的,从气流床气化炉中提取热的加压气体,这是本文介绍的工作的一部分。煤的气流床气化模型补充了实验成果并有助于数据分析。;使用新型加压丝网反应器确定温度,压力,保持时间和加热速率对煤挥发和相关炭的影响程度产量。进行了加压热重分析,以确定在一氧化碳和二氧化碳的分压范围内,压力和气体组成对炭转化率的影响。在加压金属丝网加热器中测得的最终产率和脱挥发分率以及热重分析仪的炭转化率可用于为气流床气化炉创建模型,并预测有用的合成气和气化指标。为了对气化炉的反应区进行采样,制造了一个采样系统,可以在可变的操作条件下进行径向气体成分的测量。实验室规模的主要结果表明,挥发物的产率随温度和保持时间(停留时间)的增加而降低。有压力,但程度较小。在焦炭气化过程中,可以得出高压来降低气化速率,而较高的一氧化碳分压会进一步抑制气化速率。中试数据表明,合成气的组成随温度而变化,一氧化碳和氢气的产率随温度的升高而降低。相反,较高的温度增加了二氧化碳的产率。一个重要的结论是,在中试规模气流床气化炉中,气体浓度不会发生径向变化。除建模工作外,实验室规模数据的相关性还为中试气化炉运行期间获取的数据提供了上下文。发达的加成反应模型表征了焦炭的燃尽特性,并扩展到脱挥发分行为和干燥。该模型产生的停留时间与一维模型的数量级相对应,该一维模型跟踪合成气组成,停留时间和煤转化率(作为气化炉长度的函数)。这些结果在高于2650°F(1438°C)的温度下从气流床气化炉获得的实验数据的50%内,并且建议作为预测气化炉性能和指标的工具。

著录项

  • 作者

    Wagner, David Ray.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号