首页> 外文学位 >Thermal-capillary analysis of the horizontal ribbon growth of solar silicon.
【24h】

Thermal-capillary analysis of the horizontal ribbon growth of solar silicon.

机译:太阳能硅水平带状生长的热毛细管分析。

获取原文
获取原文并翻译 | 示例

摘要

Horizontal ribbon growth (HRG) promises the growth of crystalline silicon at rates that are orders of magnitude greater than vertical ribbon growth technologies. If successful, this process would enable the production of higher-quality, near-single-crystalline silicon wafers at fraction of the cost of current production techniques. This fascinating process was first conceived by Shockley in late 1950's for silicon growth and was practiced by Bleil in the late 1960's for germanium growth. Large-scale development efforts were sub- sequently carried out by Kudo in Japan in the late 1970's and by the Energy Materials Corporation in the US in the early 1980's. However, after encouraging early results, experimental advances and process development efforts stalled, and this technique was abandoned in favor of growth methods that were easier to develop. Unlike vertical meniscus-defined crystal growth processes, such as edge-defined film- fed growth (EFG), which are inherently stable, there are many failure modes that must be avoided in the HRG process. We argue that its successful operation will rely on a thorough understanding of system design and control-issues that are perhaps only feasibly addressed via computational modeling of the system. Towards these ends, we present a comprehensive thermal-capillary model based on finite-element methods to study the coupled phenomena of heat transfer, fluid mechanics and interfacial phenom- ena (solidification and capillarity) in the HRG process. Bifurcation analysis coupled with transient computations using this model reveals process limitations that manifest as failure mechanisms, such as bridging of crystal onto crucible, spilling of melt from the crucible, and undercooling of melt at the ribbon tip, that are consistent with prior experimental observations and suggests operating windows that may allow for stable process operation. Further, coupled impurity transport calculations reveal interesting and potentially beneficial redistribution mechanisms at the solidification interface that lead to an inherent purification of the majority of the growing crystal ribbon.
机译:水平带状生长(HRG)有望以比垂直带状生长技术大几个数量级的速度生长晶体硅。如果成功的话,该工艺将能够以目前的生产技术成本的一小部分生产更高质量的近单晶硅晶片。这一令人着迷的过程最初是由Shockley在1950年代后期构思的,用于硅的生长,而在Bleil在1960年代末的实践中则用于锗的生长。随后,日本工藤在1970年代后期进行了大规模的开发工作,1980年代初在美国的能源材料公司进行了大规模的开发工作。但是,在取得了令人鼓舞的早期结果之后,实验进展和工艺开发工作停滞了,该技术被放弃,取而代之的是易于开发的生长方法。与垂直弯月面定义的晶体生长过程(如边缘定义的薄膜进料生长(EFG))固有地稳定不同,HRG过程中必须避免许多失败模式。我们认为,其成功运行将取决于对系统设计和控制问题的透彻了解,而这些问题只有通过系统的计算建模才能切实解决。为此,我们提出了一种基于有限元方法的综合热毛细管模型,以研究HRG过程中传热,流体力学和界面现象(凝固和毛细作用)的耦合现象。分叉分析与使用该模型的瞬态计算一起揭示了过程缺陷,这些缺陷表现为失效机制,例如晶体桥接到坩埚,熔体从坩埚溢出,带状尖端的熔体过冷,这与先前的实验观察和建议可以允许稳定过程操作的操作窗口。此外,耦合杂质传输计算揭示了在凝固界面处有趣且潜在有益的重新分配机制,该机制导致了大多数生长中的晶体带的固有纯化。

著录项

  • 作者

    Daggolu, Parthiv.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:40:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号