首页> 外文学位 >Modeling the atomic and electronic structure of Metal-Metal, Metal-Semiconductor and Semiconductor-oxide interfaces.
【24h】

Modeling the atomic and electronic structure of Metal-Metal, Metal-Semiconductor and Semiconductor-oxide interfaces.

机译:对金属金属,金属半导体和半导体氧化物界面的原子和电子结构建模。

获取原文
获取原文并翻译 | 示例

摘要

The continuous downward scaling of electronic devices has renewed attention on the importance of the role of material interfaces in the functioning of key components in electronic technology in recent times. It has also brought into focus the utility of atomistic modeling in providing insights from a materials design perspective. In this thesis, a combination of Semi Empirical Tight-Binding (TB), first-principles Density Functional Theory and Reactive Molecular Dynamics (MD) modeling is used to study aspects of the electronic and atomic structure of three such 'canonical' material interfaces---Metal-Metal, Metal-Semiconductor and Semiconductor oxide interfaces.;An important contribution of this thesis is the development of a novel TB model of the electronic structure of industrially relevant metals such as Cu, Ag, Au, Al. The model has been validated for accuracy and transferability against DFT calculations and has been integrated into the industry standard Nano Electronic MOdeling Tool 5 (NEMO5) simulator. In this thesis, the model has been used to provide insight into the role of quantum mechanical confinement, grain orientation in the conductivity degradation of polycrystalline Cu interconnects. The use of homogeneous compressive strain in improving the conductivity of copper has also been studied using this model.;The impact of interface chemistry on the electronic structure of Cu-Si interfaces has been investigated using Reactive MD and DFT transport calculations. Strong Fermi Level Pinning (FLP) is seen at these interfaces independent of doping concentrations providing theoretical support for the Metal-Induced Gap States (MIGS) model in describing FLP at Metal-Si interfaces.;A DFT reaction pathway approach has been used to provide theoretical insight into experimentally observed anisotropy in III-V---Atomic Layer Deposited (ALD) Al2O3 N-Metal Oxide Semiconductor (NMOS) device performance with changes in device substrate orientation from (111)A to (111)B. The significant difference in eventual interface chemistry on the respective surfaces leads to radically different electronic structures and correlates well with observed experimental anisotropy in device performance.
机译:电子设备的连续向下缩小规模最近引起人们对材料接口在电子技术中关键组件的功能中的重要性的关注。它还使原子建模的实用性从材料设计的角度提供了见解。在本文中,结合了半经验紧密结合(TB),第一原理密度泛函理论和反应分子动力学(MD)建模,研究了三种此类“规范”材料界面的电子和原子结构: -金属,金属半导体和半导体氧化物的界面。本论文的重要贡献是开发了一种新型的TB模型,用于工业相关金属(例如Cu,Ag,Au,Al)的电子结构。该模型已针对DFT计算的准确性和可传递性进行了验证,并已集成到行业标准的Nano Electronic Modeling Tool 5(NEMO5)仿真器中。在本文中,该模型已用于深入了解量子力学限制,晶粒取向在多晶铜互连线电导率退化中的作用。该模型还研究了均匀压缩应变在提高铜电导率中的应用。通过反应性MD和DFT输运计算研究了界面化学对Cu-Si界面电子结构的影响。在这些界面上可以看到强费米能级钉扎(FLP),与掺杂浓度无关,为描述金属-硅界面上的FLP提供了金属诱导的能隙态(MIGS)模型的理论支持。; DFT反应途径方法已被用来提供对III-V ---原子层沉积(ALD)Al2O3 N-金属氧化物半导体(NMOS)器件性能的实验观察到的各向异性的理论见解,器件衬底方向从(111)A变为(111)B。最终在各个表面上的界面化学的显着差异导致了根本不同的电子结构,并与观察到的器件性能实验各向异性良好相关。

著录项

  • 作者

    Hegde, Ganesh K.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号