首页> 外文学位 >Dansylated aminopropyl controlled pore glass: A model for understanding molecular-level interactions at surfaces.
【24h】

Dansylated aminopropyl controlled pore glass: A model for understanding molecular-level interactions at surfaces.

机译:丹磺酰氨基丙基控制的孔玻璃:用于了解表面分子水平相互作用的模型。

获取原文
获取原文并翻译 | 示例

摘要

The interaction of molecules covalently bonded to solid surfaces play important roles in many chemical processes and reactions (e.g., catalysis, chemical sensing, separations, and solid-phase synthesis). With the growing emphasis on the environment, researchers in academia and industry have been exploring environmentally responsible (Green) solvent systems. In this context, ionic liquids (ILs) and supercritical CO2 (scCO2) have emerged as attractive alternatives to conventional liquid organic solvents in many chemical processes and reactions that involve solid surface chemistries. However, despite significant efforts, it remains challenging for researchers to identify an "optimal" set of experimental conditions using ILs or scCO 2 to effectively carry out a particular surface cleaning task, extraction, separation, and/or surface-based reaction. Thus, it is not surprising to learn that researchers often use a trial and error approach for optimization. Unfortunately, such an Edisonian approach, even if successful in the short term, wastes time and it becomes problematic to transfer what is learned in one system to a new challenge that may involve different solutes, cosolvents, compositions, stationary phase chemistries, interfaces, and/or solute-host matrices, and it can become challenging to compensate accurately for any local effects associated with the stationary phase.; This dissertation centers on developing a fundamental, molecular-level understanding of solute-liquid and solute-fluid interactions at surfaces. Toward this end, we investigate aminopropyl controlled pore glass (CPG) that is covalently labeled with a solvent-sensitive fluorescent reporter group (dansyl) as our model for studying solvent-surface interactions. The dansyl group serves simultaneously as the model solute and an environmentally sensitive fluorescent probe. We assess the local microenvironment surrounding the surface-bound dansyl residues by recording the probe's emission spectrum. These experiments provide information on the physical and physicochemical properties at the solid-liquid/fluid interface, including the nature of the attachment sites, the accessibility of the surface-bound species to solvent/fluid, and the local surface site dipolarity. We also determine how the local microenvironment that surrounds the surface-bound dansyl groups are modulated by the probe's surface loading, solvent dipolarity, surface residue end capping, and fluid composition. Solvation at the silica surface is investigated first with conventional liquid organic solvents and then extended to ILs, scCO2, and cosolvent-modified scCO2.; The results from this research suggest that at high dansyl loadings, the majority of the dansyl groups are solvated by other dansyl moieties and solvent does not significantly alter the local microenvironment surrounding the average dansyl moiety (i.e., the cybotactic region) to any significant level. At intermediate dansyl loadings, the average distance between the dansyl groups increases, and solvent is able to access/solvate/wet the dansyl groups and alter their cybotactic region to a greater extent. At the lowest dansyl loadings studied, the results suggest that these dansyl moieties are localized within solvent inaccessible/restrictive SiO2 sites (e.g., small pores).; The results also demonstrate that ILs solvate/wet the silica surface differently in comparison to molecular liquids (MLs). The cation component of ILs is the significant factor in how ILs solvate/wet silica surfaces. Solvation/wetting of surface-bound species at a silica surface depends on the cation size.; The results from these studies also demonstrate the dramatic role that fluid density and composition play in tuning the local microenvironment surrounding dansyl groups immobilized on the CPG surface. Specifically, when comparing how binary mixtures of CO2 and 3 mole % cosolvent (methanol, 2-propanol, 2,2,2-trifluoroethanol) solvate/wet CPG-bound dansyl moieties, the
机译:共价键合到固体表面上的分子的相互作用在许多化学过程和反应中起着重要作用(例如,催化,化学传感,分离和固相合成)。随着对环境的日益重视,学术界和工业界的研究人员一直在探索对环境负责的(绿色)溶剂系统。在这种情况下,在涉及固体表面化学的许多化学过程和反应中,离子液体(ILs)和超临界CO2(scCO2)已经成为常规液体有机溶剂的有吸引力的替代品。然而,尽管付出了巨大的努力,但是对于研究人员而言,使用IL或scCO 2识别一组“最佳”实验条件以有效地执行特定的表面清洁任务,提取,分离和/或基于表面的反应仍然具有挑战性。因此,得知研究人员经常使用试错法进行优化就不足为奇了。不幸的是,即使在短期内取得成功,这种爱迪生方法仍会浪费时间,而且将一个系统中获得的知识转移到可能涉及不同溶质,助溶剂,组成,固定相化学性质,界面和/或溶质-主体矩阵,准确补偿与固定相相关的任何局部效应可能会变得充满挑战。本文着重于对分子在表面的溶质-液体和溶质-流体相互作用进行基本的分子水平的理解。为此,我们研究了被溶剂敏感的荧光报告基团(丹磺酰基)共价标记的氨基丙基可控孔玻璃(CPG),作为我们研究溶剂-表面相互作用的模型。丹磺酰基同时用作模型溶质和对环境敏感的荧光探针。我们通过记录探针的发射光谱来评估围绕表面结合的丹磺酰基残基的局部微环境。这些实验提供了有关固-液/流体界面处的物理和物理化学性质的信息,包括附着位点的性质,表面结合的物质与溶剂/流体的可及性以及局部表面位点的极性。我们还确定了围绕表面结合的丹磺酰基的局部微环境如何通过探针的表面负荷,溶剂偶极性,表面残基封端和流体成分来调节。首先使用常规的液体有机溶剂研究二氧化硅表面的溶剂化,然后扩展至IL,scCO2和助溶剂改性的scCO2。这项研究的结果表明,在高丹磺酰基负载量下,大多数丹磺酰基被其他丹磺酰基部分溶剂化,并且溶剂不会显着改变围绕平均丹磺酰基部分(即cybotactic区域)的局部微环境至任何显着水平。在中等的丹磺酰基负载量下,丹磺酰基之间的平均距离增加,并且溶剂能够接近/溶剂化/润湿丹磺酰基并更大程度地改变其茶碱区域。在研究的最低丹磺酰基负载量下,结果表明这些丹磺酰基部分位于溶剂不可接近/限制性的SiO 2位点(例如小孔)内。结果还表明,与分子液体(MLs)相比,离子液体溶剂化/润湿二氧化硅表面的方式不同。 IL的阳离子成分是IL溶剂化/润湿二氧化硅表面的重要因素。二氧化硅表面上表面结合的物质的溶剂化/润湿取决于阳离子的大小。这些研究的结果还表明,流体密度和组成在调节固定在CPG表面的丹磺酰基周围的局部微环境中起着戏剧性的作用。具体而言,当比较CO2和3摩尔%助溶剂(甲醇,2-丙醇,2,2,2-三氟乙醇)的溶剂化物/湿式CPG结合的丹磺酰基部分的二元混合物时,

著录项

  • 作者

    Page, Phillip M.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号