首页> 外文学位 >Three approaches to economical photovoltaics: Conformal copper sulfide , organic luminescent films, and lead selenide nanocrystal superlattices.
【24h】

Three approaches to economical photovoltaics: Conformal copper sulfide , organic luminescent films, and lead selenide nanocrystal superlattices.

机译:三种经济的光伏方法:共形的硫化铜,有机发光膜和硒化铅纳米晶超晶格。

获取原文
获取原文并翻译 | 示例

摘要

Three routes to more efficient photovoltaics using conformal Cu2S, organic luminescent films, and nanocrystalline PbSe films are outlined below. Properties of these materials are investigated experimentally and numerically in separate studies.;In the first study, chemical vapor deposition (CVD) processes were used to fabricate Cu2S using hydrogen sulfide and the metal-organic precursor, KI5. The alternating exposure of mesoporous TiO2 and planar ZnO to the two precursors resulted in films that penetrated porous structures and deposited at a constant rate of 0.08nm/cycle over the temperature range 150C-400°C. Sheet resistance and optical absorption measurements suggest the presence of a metallic copper-poor phase of less than 100nm thick forming at the Cu2S/substrate boundary.;In a separate study, organic films doped with luminescent dyes were placed above CdTe/CdS solar cells to convert high energy photons to lower energies, better matched to the CdTe/CdS quantum efficiency peak. Efficiency improvements of up to 8.5% were obtained after optimizing dye concentration, dye chemistry, and the host material. Long-term stability tests show that the organic films are stable for at least 5000 hours under 1 sun illumination provided that the dye is encapsulated in an oxygen and water free environment.;Finally, a Monte Carlo model was developed to simulate electron and hole transport in nanocrystalline PbSe films. Transport is carried out as a series of thermally activated tunneling events between neighboring sites on a cubic lattice. Each site, representing an individual nanocrystal, is assigned a size-dependent electronic structure, and the effects of crystal size, charging, inter-crystal coupling, and energetic disorder on electron and hole mobilities/conductivities are investigated. Results of simulated field effect measurements confirm that electron mobilities and conductivities increase by an order of magnitude when the average nanocrystal diameter is increased in the 3-5nm range. Electron mobilities/conductivities begin to decrease for average nanocrystal diameters above 6nm. Our model suggests that as crystal size increases, fewer hops are required to traverse a given film length and that site energy disorder significantly inhibits transport in films composed of smaller nanocrystals. The dip in transport above 6nm can be explained by a decrease in tunneling amplitudes and by carrier interactions, which become more frequent at larger crystal diameters. Using a nearly identical set of parameter values as the electron simulations, hole simulations confirm experimental mobilities, which increase with nanocrystal size over two orders of magnitude.
机译:下面概述了使用保形Cu2S,有机发光膜和纳米晶PbSe膜实现更高效光伏的三种途径。在单独的研究中通过实验和数值研究了这些材料的性能。在第一个研究中,使用硫化氢和金属有机前驱体KI5使用化学气相沉积(CVD)工艺制造Cu2S。介孔TiO2和平面ZnO交替暴露于两种前体中,导致薄膜渗透多孔结构,并在150C-400°C的温度范围内以0.08nm /循环的恒定速率沉积。薄层电阻和光吸收测量表明,在Cu2S /基板边界处形成了厚度小于100nm的金属铜贫相。;在另一项研究中,将掺杂有发光染料的有机膜置于CdTe / CdS太阳能电池上方,将高能光子转换为低能,更好地匹配CdTe / CdS量子效率峰值。优化染料浓度,染料化学和主体材料后,效率提高了8.5%。长期稳定性测试表明,如果染料被封装在无氧和无水的环境中,则有机膜在1种阳光照射下至少可以稳定5000小时。最后,开发了Monte Carlo模型来模拟电子和空穴传输在纳米晶PbSe薄膜中。传输是在立方晶格上相邻位置之间的一系列热激活隧穿事件中进行的。代表单个纳米晶体的每个位点都被分配了一个尺寸依赖的电子结构,并且研究了晶体尺寸,电荷,晶体间耦合以及高能无序对电子和空穴迁移率/电导率的影响。模拟场效应测量的结果证实,当平均纳米晶体直径在3-5nm范围内增加时,电子迁移率和电导率会增加一个数量级。对于大于6nm的平均纳米晶体直径,电子迁移率/电导率开始降低。我们的模型表明,随着晶体尺寸的增加,遍历给定膜长度所需的跃点数更少,并且位能紊乱显着抑制了由较小纳米晶体组成的膜的传输。高于6nm的传输下降可以通过隧穿幅度的减小和载流子相互作用来解释,这在较大的晶体直径下变得更加频繁。使用与电子模拟几乎相同的参数值集,空穴模拟可以确认实验迁移率,随着纳米晶体尺寸增加两个数量级,实验迁移率会增加。

著录项

  • 作者

    Carbone, Ian A.;

  • 作者单位

    University of California, Santa Cruz.;

  • 授予单位 University of California, Santa Cruz.;
  • 学科 Chemistry Inorganic.;Physics General.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号