首页> 外文学位 >Metal nanoparticle deposition on biological and physical scaffolds to develop a new class of electronic devices.
【24h】

Metal nanoparticle deposition on biological and physical scaffolds to develop a new class of electronic devices.

机译:金属纳米颗粒在生物和物理支架上的沉积,从而开发出新型的电子设备。

获取原文
获取原文并翻译 | 示例

摘要

Nanoparticle based devices are becoming of great interest because of their single-electron transport behavior, and high surface charge density. Nanoparticle based devices operate at low power, and are potentially highly stable and extremely robust. Making interconnections to nanoparticle devices, however, has been an impending issue. Also percolating/conductive array of nanoparticles is not easy to build since repulsion between the charged nanoparticles causes them to deposit at distance significantly larger for electron tunneling. In this study, we resolve these challenges to make nanoparticle based electronic devices. Using biological (bacteria) or physical (polyelectrolyte fiber) scaffolds, we selectively deposited percolating array of 30 nm Au nanoparticles, to produce a highly versatile nanoparticle-organic hybrid device. The device is based on electron tunneling phenomena, which is highly sensitive to change in inter-particle distance and dielectric constant between nanoparticles. The key to building this structure is the molecular brushes on the surface of the scaffold, which shield the charge on nanoparticle to allow for percolating deposition. The electrostatic attraction for such a deposition on bacteria was measured to be so strong (0.038 N/m) that it could bend a 400 nm long and 25 nm wide gold nanorod. Once the device is built, the hygroscopic scaffolds were actuated by humidity, to modulate the electron tunneling barrier width (or height) between the metallic nanoparticles. A decrease in inter-particle separation by 0.2 nm or a change in the dielectric constant from ∼ 40 to 3 (for humidity excursion from 20% to ∼0%), causes a 40-150 fold increase in electron tunneling current. The coupling between the underlying scaffold and the Au particle structure is essential to achieving such a high and robust change in current. In contrast to most humidity sensors, the sensitivity is extremely high at low humidity. This device is >10-fold better than standard microelectronic and MEMS technology based humidity sensors. After the deposition, the 'live' bacterial scaffold retains its biological construct, providing an avenue for active integration of biological functions with electronic transport in nanoparticle device. Such hybrids will be the key to conceptually new electronic devices that can be integrated with power and function of microorganisms, on flexible plastic-like substrates using simple beaker chemistry. The technology has broad potential based on variety of nanoparticles (for example, magnetic, metallic and semi-conducting) to make electro-optical and inorganic devices, bringing a prominent advancement in the present technology. Our work is published in, Angewandte Chemie, JACS and Nano Letters, and featured in places such as, Discover Magazine, Science News and Nature.
机译:基于纳米粒子的设备由于其单电子传输行为和高表面电荷密度而变得备受关注。基于纳米粒子的设备以低功率运行,并且潜在地高度稳定且极其坚固。然而,与纳米粒子设备的互连一直是迫在眉睫的问题。同样,纳米粒子的渗滤/导电阵列也不容易建立,因为带电纳米粒子之间的排斥力导致它们沉积在明显更大的距离处,以进行电子隧穿。在这项研究中,我们解决了制造基于纳米粒子的电子设备的这些挑战。使用生物(细菌)或物理(聚电解质纤维)支架,我们选择性地沉积了30 nm Au纳米颗粒的渗滤阵列,以生产高度通用的纳米颗粒-有机杂化器件。该设备基于电子隧穿现象,该现象对粒子间距离和纳米粒子之间的介电常数的变化高度敏感。建立这种结构的关键是在支架表面上的分子刷,该分子刷可屏蔽纳米颗粒上的电荷,以实现渗滤沉积。经测量,这种在细菌上沉积的静电引力非常强(0.038 N / m),以至于可以弯曲400 nm长和25 nm宽的金纳米棒。一旦装置被构建,吸湿支架就被湿度致动,以调节金属纳米颗粒之间的电子隧穿势垒宽度(或高度)。粒子间的间距减小<0.2 nm或介电常数从〜40变为3(对于湿度偏移从20%到〜0%),将导致电子隧穿电流增加40-150倍。下层支架与Au颗粒结构之间的耦合对于实现如此高且稳定的电流变化至关重要。与大多数湿度传感器相比,在低湿度下灵敏度非常高。该器件比基于标准微电子和MEMS技术的湿度传感器高出10倍以上。沉积后,“活”细菌支架保留其生物学结构,从而为生物学功能与电子传输在纳米粒子设备中的主动整合提供了途径。这种混合动力将成为概念上新颖的电子设备的关键,该电子设备可以使用简单的烧杯化学方法,在类似于塑料的柔性基板上与微生物的力量和功能整合在一起。基于多种纳米颗粒(例如,磁性,金属和半导体),该技术具有广阔的潜力,可用于制造光电器件和无机器件,从而带来了本技术的显着进步。我们的工作发表在Angewandte Chemie,JACS和Nano Letters上,并在《发现》杂志,《科学新闻》和《自然》等杂志上发表。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号