首页> 外文学位 >Biochemical and genetic probing of transcriptional activity of the Escherichia coli chromosome.
【24h】

Biochemical and genetic probing of transcriptional activity of the Escherichia coli chromosome.

机译:大肠杆菌染色体转录活性的生化和遗传探测。

获取原文
获取原文并翻译 | 示例

摘要

DNA topoisomerases are ubiquitous enzymes playing an essential role in chromosome maintenance in all organisms. Enzymatic actions involved in transient DNA breaks affect nearly the biological processes using DNA as a template. These enzymes sustain a local change in DNA topology which has various biological effects including transcription. In Chapter 2 I assessed whole-genome mRNA abundances as a function of gene locations on the chromosome of Escherichia coli. Genomic and signal processing techniques allowed me to determine statistically significant patterns in the spatial series of transcriptional activities. Short- and long-range patterns of transcriptional activities correlate with the activities of a key DNA topoisomerase, DNA gyrase, and coincide with its distribution on the chromosome. The findings that spatial patterns of transcription can be modulated by changes in DNA supercoiling provide strong evidence of physiologically relevant higher-order organization of transcription in a bacterial chromosome. Perturbations of DNA gyrase can result in changes of DNA relaxation, DNA repair, and DNA replication. Each process affects complex transcriptional responses involving multiple genes and regulons. In Chapter 3, I carried out an analysis in which the individual effects on gene expression are independently collected and then combined within a linear model in order to understand the nature of a response. By representing the gyrase inhibition as a true pleiotropic phenomenon, I was able to demonstrate that: (i) DNA replication is required for the formation of spatial transcriptional domains; (ii) the transcriptional response to the gyrase inhibition is coordinated between at least two modules involved in DNA maintenance, relaxation and damage response; (iii) genes whose transcriptional response to gyrase inhibition does not depend on the main relaxation activity of the cell can be classified on the basis of a GC excess in their upstream and coding sequences; and (iv) relaxation by topoisomerase I dominates the transcriptional response followed by the effects of replication and RecA. Lastly, I investigated the distributions of DNA topoisomerase I, II, and IV on the E. coli chromosome using immunoprecipitation with antibodies specific against each topoisomerase and DNA microarray technique. Novel DNA-binding properties of DNA topoisomerases are discussed in Chapter 4.
机译:DNA拓扑异构酶是普遍存在的酶,在所有生物体的染色体维持中起着至关重要的作用。以DNA为模板,涉及瞬时DNA断裂的酶促作用几乎影响了整个生物学过程。这些酶维持DNA拓扑结构的局部变化,具有各种生物学作用,包括转录。在第2章中,我评估了全基因组mRNA的丰度与大肠杆菌染色体上基因位置的关系。基因组和信号处理技术使我能够确定转录活动的空间系列中具有统计学意义的模式。转录活动的短程和远程模式与关键的DNA拓扑异构酶,DNA回旋酶的活性相关,并且与其在染色体上的分布一致。可以通过DNA超螺旋的变化来调节转录的空间模式的发现,为细菌染色体上转录的生理相关的高阶组织提供了有力的证据。 DNA旋转酶的扰动可能导致DNA松弛,DNA修复和DNA复制的变化。每个过程都会影响涉及多个基因和调控子的复杂转录反应。在第3章中,我进行了分析,其中独立收集了对基因表达的各个影响,然后将其组合在线性模型中,以了解响应的性质。通过将回旋酶抑制表示为真正的多效现象,我能够证明:(i)DNA复制是空间转录域形成所必需的; (ii)对促旋酶抑制的转录应答在涉及DNA维持,松弛和损伤应答的至少两个模块之间协调; (iii)可以根据其上游和编码序列中GC过量的情况来对那些对促旋酶抑制的转录反应不依赖于细胞主要松弛活性的基因进行分类; (iv)拓扑异构酶I的松弛作用主导转录反应,随后是复制和RecA的作用。最后,我使用针对每种拓扑异构酶的特异性抗体和DNA微阵列技术进行免疫沉淀,研究了DNA拓扑异构酶I,II和IV在大肠杆菌染色体上的分布。第4章讨论了DNA拓扑异构酶的新型DNA结合特性。

著录项

  • 作者

    Jeong, Kyeong Soo.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Biology Molecular.; Biology Genetics.; Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;遗传学;微生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号