首页> 外文学位 >Analysis of Tandem Bubble Interaction and Jet Formation in a Microfluidic Channel.
【24h】

Analysis of Tandem Bubble Interaction and Jet Formation in a Microfluidic Channel.

机译:分析微流体通道中的串联气泡相互作用和射流形成。

获取原文
获取原文并翻译 | 示例

摘要

Tandem bubble interactions have been shown to produce jets that can be used to create membrane poration on single cells, and jet speed has been implicated as a critical parameter for tandem bubble-induced bioeffects. In this thesis, the dynamics of single and tandem bubbles in a microfluidic channel (25 × 800 &mgr;m in height and width) are investigated to access the effects of bubble size on tandem bubble interaction and resultant jet. Experimentally, the dynamics of bubble oscillation produced by laser irradiation of a gold dot (15 nm thick and 6 &mgr;m in diameter) coated on the glass substrate of the microfluidic channel are captured by a high-speed camera, from which the time history of bubble size and jet speed are determined. Numerically, the bubble dynamics are simulated using 3DynaFS-BEM (DYNAFLOW, INC.) based on a potential flow model solved by boundary element method (BEM). By adjusting the initial conditions in the BEM code, the dynamics of laser-generated single bubbles of different sizes were matched with experimental results. The model was subsequently used to simulate the tandem bubble interactions in anti-phase oscillation. The results show that jet shape and volume are predominately controlled by the maximum diameter of the first bubble ( D1) while jet speed is linearly correlated with the maximum diameter of the second bubble (D2). In comparison, jet momentum and kinetic energy are more sensitive to variations in bubble size and increase more rapidly with both D1 and D2, especially at large bubble sizes.
机译:串联泡沫相互作用已显示可产生可用于在单细胞上形成膜孔的喷射,并且喷射速度已被认为是串联泡沫诱导的生物效应的关键参数。在本文中,研究了微流体通道(高度和宽度为25×800μm)中单个和串联气泡的动力学,以研究气泡尺寸对串联气泡相互作用和最终射流的影响。实验上,通过高速相机捕获由激光照射涂覆在微流体通道玻璃基板上的金点(厚度为15 nm厚且直径为6μm)产生的气泡振荡的动力学,从中可以了解时间历史确定气泡大小和喷射速度。在数值上,使用3DynaFS-BEM(DYNAFLOW,INC。)基于通过边界元法(BEM)求解的势流模型模拟气泡动力学。通过调整BEM代码中的初始条件,可以将激光生成的不同大小的单个气泡的动力学与实验结果相匹配。该模型随后用于模拟反相振荡中的串联气泡相互作用。结果表明,喷射形状和体积主要受第一个气泡的最大直径(D1)的控制,而喷射速度与第二个气泡的最大直径(D2)线性相关。相比之下,喷射动量和动能对气泡大小的变化更敏感,并且随着D1和D2的增加而增加得更快,尤其是在较大气泡大小的情况下。

著录项

  • 作者

    Yang, Chen.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2013
  • 页码 81 p.
  • 总页数 81
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号