首页> 外文学位 >Optimal Oscillations and Chaos Generation in Biologically-Inspired Systems.
【24h】

Optimal Oscillations and Chaos Generation in Biologically-Inspired Systems.

机译:生物启发系统中的最佳振荡和混沌生成。

获取原文
获取原文并翻译 | 示例

摘要

Biological systems display a variety of complex dynamic behaviors, ranging from periodic orbits to chaos. Regular rhythmic behavior, for instance, is associated with locomotion, while chaotic behavior is observed in neural interactions. Both these cases can be mathematically expressed as the interaction of a collection of coupled bodies or oscillators that are actuated to behave with a desired pattern. In animal locomotion, this desired pattern is the periodic body motion (gait) that interacts with the environment to generate thrust for motion. By contrast, the observed behavior of a network of neurons is possibly chaotic and flexible. This research focuses on the design and analysis of these two types of behaviors in biologically-inspired systems.;A fundamental problem in animal locomotion is determining a gait that optimizes an essential performance while satisfying a desired velocity constraint. In this study, a functional model is developed for a general class of three dimensional locomotors with full (six) degrees of freedom, in addition to arbitrary finite degrees of freedom for body shape deformation. An optimal turning gait problem is then formulated for a periodic body movement that minimizes a quadratic cost function while achieving a steady turning motion with prescribed average linear and angular velocities. The problem is shown to reduce equivalently to two separate and simpler minimization problems that are both solvable for globally optimal solutions.;Optimal gait theory can also be utilized in order to determine analytical justifications for observed behavior in biological systems. In this study, a simple body-fluid fish model is developed, and steady swimming at various speeds is analyzed using optimal gait theory. The results show that the gait that minimizes bending moment over tail movements and stiffness matches data from observed swimming of saithe. Furthermore, muscle tension is reduced when undulation frequency matches the resonance frequency, which maximizes the ratio of tail-tip velocity to bending moment.;The final task is to design the interconnections in a network of Andronov-Hopf oscillators in order to generate desired chaotic behavior. Due to the structure of the oscillators, it is possible to generate chaos by using weak linear coupling to destabilize the phase difference between the oscillators. To this end, a set of sufficient conditions are determined to guarantee the instability of a desired periodic solution through phase destabilization. Subsequently, a condition is found to guarantee the absence of any stable harmonic orbit. Finally, additional properties are considered, where small variations in a parameter can lead to chaotic behavior. With additional research, these results can be expanded to the design of a chaotic neural controller to generate adaptive locomotion for a mechanical rectifier.
机译:生物系统显示出各种复杂的动态行为,范围从周期性轨道到混沌。例如,规律的节律行为与运动有关,而在神经相互作用中观察到混沌行为。这两种情况都可以用数学方式表示为耦合体或振荡器集合的交互作用,这些耦合体或振荡器被驱动为以所需模式工作。在动物的运动中,这种理想的模式是周期性的身体运动(步态),它与环境相互作用以产生运动的推力。相反,观察到的神经元网络行为可能是混乱且灵活的。这项研究的重点是生物启发系统中这两种行为的设计和分析。动物运动的一个基本问题是确定能在满足所需速度约束的同时优化基本性能的步态。在这项研究中,针对具有全(六个)自由度的三维运动的通用类别,以及针对身体形状变形的任意有限自由度,开发了一个功能模型。然后,针对周期性的身体运动制定了一个最佳的转向步态问题,该问题使二次成本函数最小化,同时以规定的平均线性和角速度实现稳定的转向运动。该问题被证明等效地减少到两个单独且更简单的最小化问题,这两个问题对于全局最优解都是可以解决的。最佳步态理论也可以用来确定生物学系统中观察到的行为的分析依据。在这项研究中,建立了一个简单的体液鱼类模型,并使用最佳步态理论分析了各种速度下的稳定游泳。结果表明,使尾部运动和刚度上的弯矩最小化的步态与观察到的赛德游泳的数据相匹配。此外,当起伏频率与共振频率匹配时,肌肉张力会降低,这将使尾尖速度与弯矩的比率最大化。最后的任务是在Andronov-Hopf振荡器网络中设计互连,以产生所需的混沌行为。由于振荡器的结构,可以通过使用弱线性耦合来使振荡器之间的相位差不稳定来产生混沌。为此,确定一组足够的条件以保证所需的周期解由于相不稳定而不稳定。随后,找到保证没有稳定的谐波轨道的条件。最后,考虑其他属性,其中参数的小变化会导致混乱的行为。通过额外的研究,这些结果可以扩展到混沌神经控制器的设计,以生成机械整流器的自适应运动。

著录项

  • 作者

    Kohannim, Saba.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号