首页> 外文学位 >On the effect of silicon and phosphorus during the precipitation of kappa-carbide in Iron-Manganese-Aluminium-Carbon alloys.
【24h】

On the effect of silicon and phosphorus during the precipitation of kappa-carbide in Iron-Manganese-Aluminium-Carbon alloys.

机译:铁-锰-铝-碳合金中碳化钾沉淀过程中硅和磷的影响。

获取原文
获取原文并翻译 | 示例

摘要

Implementation of lightweight high manganese and aluminum steels for use in high energy absorbing applications requires a detailed knowledge of how alloying additions and impurities affect age hardening and high strain rate fracture properties. Dynamic fracture toughness is an important design criterion but has not been reported previously in these alloys. In addition, previous studies have shown that silicon and phosphorus increased the strength and aged hardness; however, the mechanism was unknown. This research mainly focuses on the effect of silicon and phosphorus on the precipitation of κ-carbide and alloy partitioning during aging.;Short range ordering, SRO, of Fe-Al-C into relative atomic positions described by the E21 superlattice structure preceded and occurred concurrent to spinodal decomposition. Short range diffusion of phosphorus increased the kinetics of ordering resulting in a decrease in the time required for subsequent spinodal decomposition and an increase the amplitude of carbon concentration with time. Silicon increased the strength and hardness as a result of increased carbon partitioning into the kappa-carbide during aging.;Dynamic fracture toughness was found to depend upon aluminum and carbon. Increasing the amount of solid solution carbon increased the dynamic fracture toughness in solution treated specimens. However, increasing carbon in aged specimens increased the amount of κ-carbide and produced brittle fracture. Additions of aluminum from three to nine weight percent decreased toughness regardless of the heat treatment. Dynamic fracture toughness was a strong function of AlN content. A good combination of high strength and dynamic toughness with a corresponding density reduction of 10 to 12% is obtained with aluminum additions between 6 and 7% and carbon below 1.2%.
机译:要实现用于高能量吸收应用的轻质高锰钢和铝钢,需要详细了解合金化添加物和杂质如何影响时效硬化和高应变率断裂性能。动态断裂韧性是重要的设计标准,但先前尚未在这些合金中进行报道。此外,先前的研究表明,硅和磷可提高强度和时效硬度;但是,机制尚不清楚。这项研究主要集中在硅和磷对时效过程中κ碳化物的析出和合金分配的影响。;先后发生了Fe-Al-C在由E21超晶格结构描述的相对原子位置的短程有序SRO与旋节线分解同时发生。磷的短程扩散增加了有序动力学,从而导致后续旋节线分解所需的时间减少,并且碳浓度的幅度随时间增加。硅由于老化过程中碳在碳化物中的分配增加而增加了强度和硬度。动态断裂韧性取决于铝和碳。固溶碳含量的增加增加了固溶试样的动态断裂韧性。但是,老化试样中碳的增加会增加κ碳化物的数量,并产生脆性断裂。铝的添加量从三到九%不等,而与热处理无关。动态断裂韧性是AlN含量的强函数。在铝的添加量为6%至7%且碳含量低于1.2%的情况下,可以获得高强度和动态韧性以及相应的密度降低10%至12%的良好组合。

著录项

  • 作者

    Bartlett, Laura Nicole.;

  • 作者单位

    Missouri University of Science and Technology.;

  • 授予单位 Missouri University of Science and Technology.;
  • 学科 Chemistry Inorganic.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号