首页> 外文学位 >Chemical and physical properties of nanomaterials for model catalytic systems and smart polymer membranes
【24h】

Chemical and physical properties of nanomaterials for model catalytic systems and smart polymer membranes

机译:用于模型催化系统和智能聚合物膜的纳米材料的化学和物理性质

获取原文
获取原文并翻译 | 示例

摘要

The increased development of surface science in the last half century has opened up new fields for exploration. Surfaces from the pristine to the complex can now be studied with relative ease. These developments along with the industrial society's desire for improvement have led to the study of smart materials and model systems.;Smart materials are designed to have a significant property change in response to a stimulus. Smart polymers can be synthesized that respond to a variety of stimuli including temperature, pH or light. The polymer responds to the stimulus by undergoing a transition that can affect its color, conductivity, shape, etc. Even slight changes in environment can induce large changes in the polymer. This work focuses on covalent layer-by-layer assembly grafts of the thermoresponsive polymer poly(N-isopropylacrylamide) and silica nanoparticles. When grafted to a surface, the system response to external stimuli inducing changes in topography and wettability. Utilizing nanoindentation the polymer graft's switching elastic modulus was probed as it was exposed to varying external stimuli. It was found that the modulus of the polymer graft changed an order of magnitude based on the polymer's history and current environment. Covalent layer-by-layer assembly additionally was used to functionalize porous substrates. The polymer's conformational change was leveraged in the development of an oil and water separation membrane capable of demulsification. The polymer's transition to a non-soluble configuration blocked pore passageways, preventing the oil from permeating the substrate leading to a pure water filtrate.;Advances in surface science have pushed ahead the development of cheaper and better performing catalyst systems. These systems can be developed and tested using model catalyst systems. Herein, two model systems were investigated: a supported cobalt nanoparticle catalyst and a bimetallic palladium-copper system. In the cobalt system, the smallest particles are oxidized and deactivated during the Fischer-Tropsch reaction. In the bimetallic system, the electronic effect of metal alloying was investigated using X-ray photoelectron spectroscopy. The stable alloy was surface enriched with copper. The promotion effect of copper on palladium for the acetylene hydrogenation reaction was investigated. These model systems allow for the study of fundamental phenomena on a controlled surface.
机译:近半个世纪以来,表面科学的发展日新月异,为探索开辟了新领域。现在可以相对轻松地研究从原始表面到复合体的表面。这些发展以及工业社会对改进的渴望已导致对智能材料和模型系统的研究。智能材料被设计为具有显着的特性变化以响应刺激。可以合成对各种刺激(包括温度,pH或光)有反应的智能聚合物。聚合物通过经历可影响其颜色,电导率,形状等的转变来响应刺激。即使环境的微小变化也会引起聚合物的大变化。这项工作集中在热响应性聚合物聚(N-异丙基丙烯酰胺)和二氧化硅纳米粒子的共价逐层组装接枝上。当移植到表面上时,系统对外部刺激的反应会引起形貌和润湿性的变化。利用纳米压痕,可以检测到聚合物接枝的开关弹性模量,因为它受到了各种外部刺激。已经发现,基于聚合物的历史和当前环境,聚合物接枝的模量改变了一个数量级。共价逐层组装另外用于官能化多孔基材。聚合物的构象变化被利用在能够乳化的油水分离膜的开发中。聚合物转变为不溶性构型会阻塞孔道,阻止油渗透到基质中,导致纯净的水滤液。表面科学的进步推动了更便宜,性能更好的催化剂体系的发展。可以使用模型催化剂系统开发和测试这些系统。在此,研究了两种模型系统:负载型钴纳米颗粒催化剂和双金属钯-铜系统。在钴系统中,最小的颗粒在费托反应期间被氧化并失活。在双金属系统中,使用X射线光电子能谱研究了金属合金化的电子效应。稳定的合金表面富含铜。研究了铜对钯在乙炔加氢反应中的促进作用。这些模型系统允许研究受控表面上的基本现象。

著录项

  • 作者

    Skiles, Stephanie L.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Analytical chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号