首页> 外文学位 >Mechanisms underlying synaptically driven metabolic transients in hippocampal slices.
【24h】

Mechanisms underlying synaptically driven metabolic transients in hippocampal slices.

机译:海马切片中突触驱动的代谢瞬变的潜在机制。

获取原文
获取原文并翻译 | 示例

摘要

Mitochondrial function has emerged as a central regulator of normal synaptic physiology and mitochondrial dysfunction has been implicated in the etiology of a number of neurodegenerative disorders. An important goal is to understand the regulation of mitochondrial function in complex brain tissue. One approach to monitor mitochondrial activity exploits redox changes of mitochondrial autofluorescence. The two major electron donors required for mitochondrial ATP synthesis display redox-sensitive intrinsic fluorescence. Following UV excitation, nicotinamide adenine dinucleotide (NADH) displays intrinsic fluorescence, but the oxidized form (NAD+) is non fluorescent. In contrast, FAD+ is fluorescent following excitation with blue light, but the reduced form FADH2 is non fluorescent. NAD(P)H dynamics have been used for over 40 years to assess changes in metabolic state of brain tissue under a wide range of physiological and pathological challenges, but the cell types and metabolic pathways involved remain controversial. The work presented here examines the metabolic pathways and cell types which underlie dynamic autofluorescence signals and considers the potential for these approaches for monitoring ongoing synaptic activity.;Synaptic activation in hippocampal slices results in an initial NAD(P)H decrease (oxidation phase), followed by a longer-lasting transient NAD(P)H increase (reduction phase). It was recently proposed that the reduction phase of NAD(P)H transients is attributable to glycolysis (rather than mitochondrial function) triggered by glial glutamate uptake. Studies here report that different duration stimulus trains have significant differences in the involvement of ionotropic glutamate receptors, suggesting that responses to more intense stimuli may involve astrocytes. Possible contributions of glycolysis were first tested using 2-deoxyglycose and iodoacetic acid. This approach required consideration of (1) the effects of extracellular adenosine accumulation and consequent decreases in synaptic efficacy and (2) effects of supplementation with exogenous pyruvate to sustain mitochondrial metabolism. When these effects were accounted for, responses to all stimuli tested were unaffected by pharmacological inhibition of glycolysis. Flavoprotein autofluorescence transients following extended stimuli matched (with inverted sign) NAD(P)H responses, supporting a role for mitochondrial metabolism in NAD(P)H overshoots. In addition, NAD(P)H responses to synaptic stimuli were not reduced by a non-selective inhibitor of glutamate uptake (TBOA). These results suggest that NAD(P)H transients report mitochondrial dynamics, rather than recruitment of glycolysic metabolism. (Abstract shortened by UMI.)
机译:线粒体功能已成为正常突触生理的中央调节器,线粒体功能障碍已与许多神经退行性疾病的病因有关。一个重要的目标是了解复杂脑组织中线粒体功能的调节。一种监测线粒体活性的方法利用线粒体自发荧光的氧化还原变化。线粒体ATP合成所需的两个主要电子供体显示出氧化还原敏感的固有荧光。紫外线激发后,烟酰胺腺嘌呤二核苷酸(NADH)会显示出固有的荧光,但是氧化形式(NAD +)却是非荧光的。相反,在蓝光激发下,FAD +是荧光的,但是还原形式的FADH2是非荧光的。 NAD(P)H动力学已被用于评估各种生理和病理挑战下脑组织代谢状态的变化,已有40多年的历史,但是涉及的细胞类型和代谢途径仍存在争议。本文介绍的工作检查了动态自发荧光信号基础上的代谢途径和细胞类型,并考虑了这些方法监测正在进行的突触活动的潜力。海马切片中的突触激活导致初始NAD(P)H降低(氧化阶段),随后是持续时间较长的瞬态NAD(P)H增加(还原阶段)。最近有人提出,NAD(P)H瞬态的还原阶段归因于胶质谷氨酸摄取引起的糖酵解(而不是线粒体功能)。此处的研究报告说,不同持续时间的刺激序列在离子型谷氨酸受体的参与方面有显着差异,这表明对更强烈刺激的反应可能涉及星形胶质细胞。首先使用2-脱氧葡萄糖和碘乙酸测试糖酵解的可能贡献。此方法需要考虑(1)细胞外腺苷积累的影响,从而降低突触效力,以及(2)补充外源丙酮酸以维持线粒体代谢的影响。考虑到这些影响后,对所有测试刺激的反应均不受糖酵解药理学的影响。延长刺激后的黄素蛋白自发荧光瞬变与NAD(P)H反应相匹配(具有反向符号),支持NAD(P)H过冲中线粒体代谢的作用。此外,非选择性谷氨酸摄取抑制剂(TBOA)不会降低NAD(P)H对突触刺激的反应。这些结果表明,NAD(P)H瞬态报告线粒体动力学,而不是糖酵解代谢的募集。 (摘要由UMI缩短。)

著录项

  • 作者

    Brennan, Angela M.;

  • 作者单位

    The University of New Mexico.;

  • 授予单位 The University of New Mexico.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号