首页> 外文学位 >Molecular electronic memories.
【24h】

Molecular electronic memories.

机译:分子电子记忆。

获取原文
获取原文并翻译 | 示例

摘要

The feasibility of building large memories using molecular electronic devices with bistable conductance-state memory has been investigated. A novel fabrication method for two-terminal molecular memory devices that is integratable into large-scale arrays while avoiding top-contact evaporation on a molecular monolayer has been developed. A sacrificial layer underneath the top contact metal is wet-etched to create free-standing cantilevers in aqueous solution and a self-assembled monolayer is formed on the underside of the cantilever. Subsequent atmospheric drying causes the freestanding structure to become permanently adhered to the substrate, resulting in a two-terminal molecular structure. This device has been investigated with alkanethiol monolayers as a proof-of-concept, and the expected decrease in current with increasing chain length is observed. The measured current density in control devices without molecules is also consistent with models of loaded cantilevers. Previously characterized molecules exhibiting memory behavior were also investigated and demonstrated bistable memory effects similar to earlier observations.;The scalability of such bistable molecular memory devices was analyzed from a circuits perspective, and the impact of different system parameters was quantified. It is necessary to build large arrays with at least several hundred molecular memory cells along each dimension, in order to prevent peripheral circuitry from dominating the area. It is quantitatively shown how this requirement constrains the minimum allowable forward/reverse-bias rectification ratio of the molecular devices, as well as the minimal on/off ratio of the two molecular conductance states. The parasitic wiring impedance is negligible in the case of metallic interconnect, but the impedance of currently available molecular wires makes large-scale all-molecular arrays infeasible.
机译:已经研究了使用具有双稳态电导状态存储器的分子电子设备构建大型存储器的可行性。已经开发出了一种新颖的用于双末端分子存储器件的制造方法,该方法可以集成到大规模阵列中,同时避免在分子单层上发生顶部接触蒸发。对顶部接触金属下方的牺牲层进行湿法蚀刻,以在水溶液中形成独立的悬臂,并在悬臂的下侧形成自组装单层。随后的大气干燥导致独立结构永久粘附在基材上,从而形成两个末端的分子结构。已经使用链烷硫醇单层作为概念验证研究了该器件,并观察到了随着链长的增加,电流的预期下降。在没有分子的控制设备中测得的电流密度也与负载悬臂梁的模型一致。还研究了先前表征的表现出记忆行为的分子,并证明了与先前观察到的结果类似的双稳态记忆效应。从电路的角度分析了这种双稳态分子记忆器件的可扩展性,并量化了不同系统参数的影响。为了防止外围电路控制该区域,有必要在每个方向上构建至少具有数百个分子存储单元的大型阵列。定量显示了此要求如何限制分子器件的最小允许正向/反向偏置整流比,以及两种分子电导状态的最小导通/关断比。在金属互连的情况下,寄生布线的阻抗可以忽略不计,但是当前可用的分子线的阻抗使得大规模的全分子阵列不可行。

著录项

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 235 p.
  • 总页数 235
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号