首页> 外文学位 >Phase field modeling of tetragonal to monoclinic phase transformation in zirconia.
【24h】

Phase field modeling of tetragonal to monoclinic phase transformation in zirconia.

机译:氧化锆中四方向单斜相转变的相场建模。

获取原文
获取原文并翻译 | 示例

摘要

Zirconia based ceramics are strong, hard, inert, and smooth, with low thermal conductivity and good biocompatibility. Such properties made zirconia ceramics an ideal material for different applications form thermal barrier coatings (TBCs) to biomedicine applications like femoral implants and dental bridges. However, this unusual versatility of excellent properties would be mediated by the metastable tetragonal (or cubic) transformation to the stable monoclinic phase after a certain exposure at service temperatures. This transformation from tetragonal to monoclinic, known as LTD (low temperature degradation) in biomedical application, proceeds by propagation of martensite, which corresponds to transformation twinning. As such, tetragonal to monoclinic transformation is highly sensitive to mechanical and chemomechanical stresses. It is known in fact that this transformation is the source of the fracture toughening in stabilized zirconia as it occurs at the stress concentration regions ahead of the crack tip.;This dissertation is an attempt to provide a kinetic-based model for tetragonal to monoclinic transformation in zirconia. We used the phase field technique to capture the temporal and spatial evolution of monoclinic phase. In addition to morphological patterns, we were able to calculate the developed internal stresses during tetragonal to monoclinic transformation. The model was started form the two dimensional single crystal then was expanded to the two dimensional polycrystalline and finally to the three dimensional single crystal. The model is able to predict the most physical properties associated with tetragonal to monoclinic transformation in zirconia including: morphological patterns, transformation toughening, shape memory effect, pseudoelasticity, surface uplift, and variants impingement. The model was benched marked with several experimental works. The good agreements between simulation results and experimental data, make the model a reliable tool for predicting tetragonal to monoclinic transformation in the cases we lack experimental observations.
机译:氧化锆基陶瓷坚固,坚硬,惰性和光滑,具有低导热性和良好的生物相容性。此类特性使氧化锆陶瓷成为用于各种应用的理想材料,形成了用于生物医学应用(如股骨植入物和牙桥)的隔热涂层(TBC)。但是,在工作温度下一定暴露后,亚稳态的四方(或立方)转变为稳定的单斜晶相将介导优异的性能的这种非同寻常的多功能性。这种从四方到单斜晶的转变,在生物医学应用中称为LTD(低温降解),是通过马氏体的传播而进行的,这相当于转变孪生。这样,四方向单斜相转变对机械和化学机械应力高度敏感。实际上,众所周知,这种转变是稳定氧化锆中断裂韧化的源头,因为它发生在裂纹尖端之前的应力集中区域。本论文试图为基于动力学的四方向单斜向转变提供模型在氧化锆中。我们使用相场技术来捕获单斜相的时空演化。除了形态模式,我们还能够计算从四方向单斜相转变过程中产生的内部应力。从二维单晶开始模型,然后将其扩展为二维多晶,最后扩展为三维单晶。该模型能够预测与氧化锆的四方向单斜相转变有关的大多数物理特性,包括:形态模式,相变韧化,形状记忆效应,拟弹性,表面隆起和变体撞击。该模型带有许多实验工作,并标有基准。仿真结果与实验数据之间的良好一致性,使得该模型成为预测我们在缺乏实验观察结果的情况下从四面体向单斜体转变的可靠工具。

著录项

  • 作者

    Mamivand, Mahmood.;

  • 作者单位

    Mississippi State University.;

  • 授予单位 Mississippi State University.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号