首页> 外文学位 >Low-power system design: Considering system reliability and security.
【24h】

Low-power system design: Considering system reliability and security.

机译:低功耗系统设计:考虑系统可靠性和安全性。

获取原文
获取原文并翻译 | 示例

摘要

This thesis studies several important problems in VLSI system design related to low power, reliability and security. In order to answer this question, we provide several novel ideas at five design levels, namely, device level, circuit level, architecture level, algorithm level, and architecture and algorithm co-design.; It is well-known that rapidly evolving silicon technology creates smaller and faster CMOS transistors, with decreasing switching power. At a first sight, technology works for reducing power consumption. However, die area is not shrinking with technology (in other words, chips pack a quadratically increasing number of transistors). This would not be a problem if the power dissipation of basic CMOS gates decreased fast enough to compensate the increase in integration density. Unfortunately, power consumption arises as a third axis in the optimization space in addition to the traditional speed (performance) and area (cost) dimensions.; Existing low power design techniques do not significantly lower the power consumption of the chip; nor do they consider some new phenomenon caused by application of novel CMOS technologies, for example, gate leakage current caused by high-kappa gate dielectric. Low power design techniques should be refreshed with consideration of the new phenomenon. Furthermore, traditional low power techniques caused some significantly effects to the chip reliability and security, which were not well studied yet. In this thesis, we analyze some harmful effects of low power techniques to system reliability and proposed some methodologies to enhance the system reliability level while reducing significant power consumption. For system security, we propose Dynamic Voltage and Frequency Scaling (DVFS) as a novel method to prevent sensitive embedded processor from popular power attacks which are real thread to the secure processor.; More specifically, this thesis is divided into five parts to illustrate the above ideas. First, we studied leakage power and reliability at the device level by realizing a novel low-leakage reliable SRAM cell design, i.e., Hybrid high-kappa gate dielectric and jointly-biased gate and substrate SRAM (HSRAM) cell to suppress leakage current and enhance the resistance to soft error. At the circuit level, the thesis presents an accurate and efficient stacking effect macro-model for leakage power in sub-100nm circuits. The best input vector control method was reconsidered by adding the important gate leakage component. At the architecture level, we engineered power attack resistance for a novel CryptoSystem-On-a-Chip (cSOC) by considering the effects on power attacks of some intrinsic features of the cryptoprocessor core inside the cSOC, such as multiple-issue-width and leakage power scaling. We use Dynamic Voltage and Frequency Switching (DVFS) units in the cSOC to make the CPU more resistant to power attacks. At the algorithm level, the thesis presents a reliability characterization model. Then based on this model, we use reliability-bounded low-power design as a methodology to balance reliability enhancement and power reduction in chip design. We use voltage island partitioning for System-On-a-Chip (SOC) and DVFS as case studies for this methodology. Finally, we consider an architecture and algorithm co-design by using motion estimation as an example.
机译:本文研究了VLSI系统设计中与低功耗,可靠性和安全性有关的几个重要问题。为了回答这个问题,我们在五个设计级别上提供了一些新颖的想法,即设备级别,电路级别,架构级别,算法级别以及架构和算法协同设计。众所周知,快速发展的硅技术可以在减小开关功率的情况下制造出更小更快的CMOS晶体管。乍看之下,技术可以降低功耗。但是,芯片面积并没有随着技术的发展而缩小(换句话说,芯片封装的晶体管数量正以二次方增长)。如果基本CMOS栅极的功耗降低得足够快以补偿集成密度的增加,这将不是问题。不幸的是,除了传统的速度(性能)和面积(成本)尺寸外,功耗还成为优化空间中的第三条轴。现有的低功耗设计技术不会显着降低芯片的功耗。他们也没有考虑由于应用新型CMOS技术而引起的一些新现象,例如,由高kappa栅极电介质引起的栅极泄漏电流。低功耗设计技术应考虑新现象而更新。此外,传统的低功耗技术对芯片的可靠性和安全性产生了一些重大影响,目前尚未得到很好的研究。在本文中,我们分析了低功耗技术对系统可靠性的一些有害影响,并提出了一些在降低系统功耗的同时提高系统可靠性的方法。为了系统安全,我们提出动态电压和频率缩放(DVFS)作为一种新颖的方法,以防止敏感的嵌入式处理器受到流行的电源攻击,这些攻击是安全处理器的真正线程。更具体地说,本论文分为五个部分来说明上述思想。首先,我们通过实现一种新颖的低泄漏可靠SRAM单元设计来研究器件级别的泄漏功率和可靠性,即混合高kappa栅极电介质以及共同偏置的栅极和衬底SRAM(HSRAM)单元,以抑制泄漏电流并增强抵抗软错误。在电路层面,本文提出了一种精确有效的亚100nm以下电路泄漏功率的叠加效应宏模型。通过添加重要的栅极泄漏分量,重新考虑了最佳输入矢量控制方法。在架构级别,我们考虑了cSOC内部加密处理器内核的某些固有特征(例如多问题宽度和整数)对功率攻击的影响,从而设计了一种新型的片上系统CSOC。泄漏功率定标。我们在cSOC中使用了动态电压和频率切换(DVFS)单元,以使CPU更能抵抗电源攻击。在算法层面,本文提出了一种可靠性表征模型。然后,基于该模型,我们使用可靠性受限的低功耗设计作为平衡芯片设计中可靠性提高和功耗降低的方法。我们将片上系统(SOC)和DVFS的电压岛分区用作此方法的案例研究。最后,以运动估计为例,考虑一种架构与算法协同设计。

著录项

  • 作者

    Yang, Shengqi.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 284 p.
  • 总页数 284
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号