首页> 外文学位 >Providing flow parameters for approximate die design models and the improvement and verification of those models using CFD analysis.
【24h】

Providing flow parameters for approximate die design models and the improvement and verification of those models using CFD analysis.

机译:为近似的模具设计模型提供流动参数,并使用CFD分析对这些模型进行改进和验证。

获取原文
获取原文并翻译 | 示例

摘要

The role of a coating die is to distribute a uniform, two dimensional liquid film over a solid surface, often formed as an intermediate step in the manufacturing process of polymeric sheet products. The goal of coating die design is to deliver, with a single die, the largest range of fluid rheologies and flow conditions to within specified uniformity limits. Demanding applications require the film thickness nonuniformity to be as little as one percent across the entire coating surface for acceptable quality of the final product, necessitating optimized design as well as precision manufacturing.;There are two principal techniques used for the prediction of optimal die geometry and the analysis of flow uniformity at the slot exit, which includes full numerical computation and theoretical approximate models. Three dimensional computational solutions are numerically intensive, often requiring long computational times to accurately simulate a single die flow condition, and for this reason it is difficult to optimize coating die design solely through the use of full numerical computation. In the alternative approximate modeling approach, the complete set of three dimensional equations governing flow are averaged across the cavity cross section. As a result, the details of the flow and pressure fields at each node point specified within the cavity geometry is exchanged for average flow properties. The advantage of these simplified approximate models is that they are much easier to solve, allowing for many flow conditions and geometric parameters to be tested quickly; however, quantifiable error is incurred due to the approximations of the complete three dimensional set of governing momentum equations.;Much of the initial work on theoretical single cavity die design and the approximate modeling approach focused on the viscous dominated analysis of both the cavity and slot regions for a generalized Newtonian fluid obeying a power law dependence of viscosity on shear rate. Since this initial work, the viscous dominated model has been generalized to include the inertial and gravitational effects within the cavity as well as expanded to incorporate more complex geometries for which the cavity cross sectional area, slot lengths, and slot heights may vary widthwise along the die. For the solution of the single cavity approximate die design model, additional parameters, known as the kinetic and viscous shape factors, are necessary inputs; these parameters incorporate the specific cross sectional shape of the cavity domain into the pressure drop flow relationship.;In more complex but often superior designs, a secondary cavity and slot are added to improve flow distribution, where the function of the inner cavity and slot are identical to those respective of the single cavity coating die design, however significant flow occurs in the cross section of the outer cavity between the exit of the inner slot and entrance to the outer slot. Despite the complication of this flow in the outer cavity cross section, much of the initial work on theoretical dual cavity die design directly applied the established governing equations of flow in the inner cavity, represented in the approximate models, to both the inner and outer cavities. Ruschak and Weinstein (1997a) obtain a different outer cavity equation for the analysis of dual cavity coating dies, utilizing a perturbation technique to derive a flow equation which accounts for the three dimensional nature of the outer cavity flow and considers the nonlinearities occurring due to inertia or generalized Newtonian rheology. Here, a similar, yet generalized, shape factor for the outer cavity arises which is defined to be consistent with the usual definition for the inner cavity for purely viscous, Newtonian flow.;The focus of this research is to utilize Computational Fluid Dynamics as idealized experimental data, which is to be used for the improvement and verification of the theoretical outer cavity approximate die design model. Additionally, this research provides the first numerical computations of the outer cavity shape factor, incorporating shear thinning fluids as well as fluid inertia. Here, a two dimensional validation of the fundamental assumptions utilized in the derivation of the outer cavity approximate model is performed, while an attempted three dimensional validation of the predicted flow per unit cavity width exiting the outer slot provides confidence in the validity of the approximate modeling approach. A final, practical demonstration of the solution of the outer cavity approximate model provides valuable information for the investigation into the the optimum design of the outer cavity cross section. Ultimately, this research provides a firmer foundation for the design of the outer cavity in a dual cavity coating die, while further demonstrating the utility and importance of the theoretical approximate die design modeling approach.
机译:涂布模具的作用是在固体表面上分布均匀的二维液膜,通常在聚合物片材产品的制造过程中作为中间步骤形成。涂层模具设计的目标是用单个模具提供最大范围的流体流变性和流动条件,以达到规定的均匀度极限。苛刻的应用要求整个涂层表面的膜厚不均匀度要低至百分之一,以使最终产品具有可接受的质量,从而需要优化设计和精确制造。有两种主要技术用于预测最佳模具几何形状以及在槽出口处的流动均匀性分析,其中包括完整的数值计算和理论上的近似模型。三维计算解决方案是数值密集型的,通常需要很长的计算时间才能准确地模拟单个模具的流动状况,因此,仅通过使用完整的数值计算来优化涂层模具的设计就很困难。在另一种近似建模方法中,控制整个流动的三维方程的完整集合在整个腔体横截面上取平均值。结果,在腔体几何形状内指定的每个节点点处的流场和压力场的细节被交换为平均流特性。这些简化的近似模型的优点是它们更易于求解,可以快速测试许多流动条件和几何参数;然而,由于完整的三维控制动量方程组的逼近而产生了可量化的误差。;许多有关理论上单腔模具设计的初步工作和近似建模方法侧重于对腔和槽的粘性控制分析服从幂律对剪切速率的幂律依赖性的广义牛顿流体区域。自从这项最初的工作以来,粘性主导模型已被概括为包括型腔内的惯性和引力效应,并扩展为合并更复杂的几何形状,对于这些几何形状,型腔的横截面面积,槽口长度和槽口高度可以沿容器的宽度方向变化。死。对于单腔近似模具设计模型的求解,需要输入其他参数,称为动力学和粘性形状因子。这些参数将空腔域的特定横截面形状纳入压降流动关系中。在更复杂但通常更好的设计中,添加了辅助空腔和槽口以改善流量分布,其中内部空腔和槽口的功能是与单腔涂覆模具设计的那些相同,但是在内部槽的出口与外部槽的入口之间的外部腔的横截面中发生大量流动。尽管外腔横截面中的流动很复杂,但理论上双腔模具设计的许多初始工作还是直接将已建立的内腔流动控制方程(以近似模型表示)直接应用于内腔和外腔。 Ruschak和Weinstein(1997a)利用扰动技术推导了流动方程,该方程考虑了外腔流动的三维性质,并考虑了由于惯性而产生的非线性,从而获得了用于分析双腔涂层模具的不同外腔方程。或广义牛顿流变学。在这里,出现了类似但通用的外腔形状因子,其定义与纯粘性牛顿流的内腔通常定义一致;;本研究的重点是将计算流体动力学作为理想化方法实验数据,将用于理论外腔近似模具设计模型的改进和验证。此外,这项研究提供了外腔形状因数的首次数值计算,其中包括剪切稀化流体以及流体惯性。在此,对在外腔近似模型的推导中使用的基本假设进行了二维验证,而从外槽流出的每单位腔宽的预测流量的尝试性的三维验证为可信度近似模型的有效性提供了信心方法。最终的外腔近似模型解决方案的实际演示为研究外腔横截面的最佳设计提供了有价值的信息。最终,这项研究为双腔涂层模具中的外腔设计提供了更坚实的基础,同时进一步证明了理论上近似的模具设计建模方法的实用性和重要性。

著录项

  • 作者

    Livelli, Mark Andrew.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2010
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号