首页> 外文学位 >Microfluidic-microstructure interaction study under oscillating flows: Design, modeling, testing and verifications.
【24h】

Microfluidic-microstructure interaction study under oscillating flows: Design, modeling, testing and verifications.

机译:振荡流下的微流体-微结构相互作用研究:设计,建模,测试和验证。

获取原文
获取原文并翻译 | 示例

摘要

In microsystem applications, many MEMS devices are submerged in fluid and their responses and performances are directly influenced by the microfluid-microstructure interactions. Recent developments in microfluidic devices such as micro pumps, micro valves, micro viscometer, biomedical related micro fluidic chips, have necessitated investigations on fluid-structure interactions at the micro levels. A microcantilever submerged in microfluidic channel forms the simplest model for such investigations. The study of such interactions however necessitates systematic developments in suitable experimental methods.;In this dissertation, a polymer base micro-fabrication process called "soft-lithography" is adopted to fabricate microcantilever integrated microfluidic channels. An experimental setup is designed to characterize the dynamic behavior of the submerged microcantilever using a new method called DVIP (Deflection using Video Image Processing) method. The DVIP method is used to estimate the deflection or dynamic responses of microcantilever under different flow conditions. The flow behaviors could also be characterized from the response of the microcantilever. A finite element model of the microstructure is developed and results obtained from this model are validated using the experimental results. The finite element model also provides considerable potential to investigate the influence of fluid viscosity on the dynamic responses of the microcantilever. A microcantilever integrated within the microfluidic chip was subsequently tested in the laboratory with fluids of different viscosities. The results obtained are analyzed and discussed in the context of an application development such as a viscometer. An effort is made to visualize the flows near the cantilever tip using the fluids mixed with fluorescent particles. The DVIP method is further extended to estimate the full cantilever beam deflection, which can be applied for determining the mode of vibration. Finally, it is established that the DVIP method is a reliable approach to estimate the dynamic deflections of a microcantilever subject to fluid forces. The concept of the micro viscometer that is developed in the current study can be miniaturized by integrating a miniature camera and an integrated circuit within the microfluidic chip. The current study, however, is limited to square cross-section microfluidic chip, while the proposed methodology would be applicable to study the responses of the microcantilever integrated within channels of different cross-sections. The DVIP method also offers considerable potential to characterize nano-electromechanical devices by integrating a more efficient and faster camera.
机译:在微系统应用中,许多MEMS器件浸没在流体中,它们的响应和性能直接受到微流体-微结构相互作用的影响。微流体装置的最新发展,例如微型泵,微型阀,微型粘度计,与生物医学有关的微型流体芯片,需要在微观水平上研究流体-结构相互作用。淹没在微流体通道中的微悬臂梁是此类研究的最简单模型。然而,对这种相互作用的研究需要在适当的实验方法中进行系统的开发。本论文采用一种称为“软光刻”的聚合物基微加工工艺来制备微悬臂集成微流控通道。设计了一种实验装置,以使用称为DVIP(使用视频图像处理的偏转)方法的新方法来表征浸入式微悬臂梁的动态行为。 DVIP方法用于估计不同流动条件下微悬臂梁的挠度或动力响应。流动行为也可以通过微悬臂梁的响应来表征。建立了微观结构的有限元模型,并使用实验结果验证了从该模型获得的结果。有限元模型还提供了巨大的潜力来研究流体粘度对微悬臂梁动力响应的影响。随后,在实验室中使用不同粘度的流体对集成在微流控芯片中的微悬臂梁进行了测试。在诸如粘度计的应用开发环境中分析和讨论了获得的结果。使用与荧光粒子混合的流体,努力使悬臂尖端附近的流动可视化。 DVIP方法进一步扩展为估计整个悬臂梁的挠度,可将其应用于确定振动模式。最终,建立了DVIP方法是一种可靠的方法来估计受流体力作用的微悬臂梁的动态挠度。当前研究中开发的微粘度计的概念可以通过在微流控芯片中集成微型相机和集成电路来实现微型化。然而,当前的研究仅限于方形截面的微流控芯片,而所提出的方法将适用于研究集成在不同截面通道内的微悬臂梁的响应。 DVIP方法还通过集成更高效,更快速的摄像头,为表征纳米机电设备提供了巨大潜力。

著录项

  • 作者

    Hossain, MD Shakhawat.;

  • 作者单位

    Concordia University (Canada).;

  • 授予单位 Concordia University (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 M.A.Sc.
  • 年度 2010
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号