首页> 外文学位 >New lower bounds for approximation algorithms in the Lovasz-Schrijver hierarchy.
【24h】

New lower bounds for approximation algorithms in the Lovasz-Schrijver hierarchy.

机译:Lovasz-Schrijver层次结构中近似算法的新下界。

获取原文
获取原文并翻译 | 示例

摘要

Determining how well we can efficiently compute approximate solutions to NP-hard problems is of great theoretical and practical interest. Typically the famous PCP theorem is used for showing that a problem has no algorithms computing good approximations. Unfortunately, for many problem this approach has failed. Nevertheless, for such problems, we may instead be able to show that a large subclass of algorithms cannot compute good approximations.; This thesis takes this approach, concentrating on subclasses of algorithms defined by the LS and LS+ Lovasz-Schrijver hierarchies. These subclasses define hierarchies of algorithms where algorithms in higher levels (also called "rounds") require more time, but may compute better approximations. Algorithms in the LS hierarchy are based on linear programming relaxations while those in the more powerful LS+ hierarchy are based on semidefinite programming relaxations. Most known approximation algorithms lie within the first two-three levels of the LS+ hierarchy, including the recent celebrated approximation algorithms of Goemans-Williamson [27] and Arora-Rao-Vazirani [7] for MAX-CUT and SPARSEST-CUT, respectively. So understanding the power of these algorithm families seems important.; We obtain new lower bounds for the LS and LS + hierarchies for several important problems. In all cases the approximations we rule out in these hierarchies are not ruled out by known PCP-based arguments. Moreover, unlike PCP-based inapproximability results, all our results are unconditional and do not rely on any computational complexity assumptions.; The lower bounds we prove are as follows: (1) For VERTEX COVER we show that O(log n) rounds of LS are needed to obtain 2 - epsilon approximations and O(log 2 n) rounds are needed for 1.5 - epsilon approximations. (2) For MAX-3SAT and SET COVER we show that O(n) rounds of LS + are needed for any non-trivial approximation. (3) For hypergraph VERTEX COVER on rank-k hypergraphs we show that O( n) rounds of LS+ are needed for k - 1 - epsilon approximations. (4) For hypergraph VERTEX COVER on rank-k hypergraphs we show that O(log log n) rounds of LS are needed for k - epsilon approximations.
机译:确定我们如何有效地计算NP难题的近似解具有很大的理论和实践意义。通常,著名的PCP定理用于表明问题没有算法可以计算出良好的近似值。不幸的是,由于许多问题,这种方法失败了。尽管如此,对于这样的问题,我们也许可以证明,大量算法子类无法计算出良好的近似值。本文采用这种方法,重点介绍由LS和LS + Lovasz-Schrijver层次结构定义的算法的子类。这些子类定义算法的层次结构,其中较高级别的算法(也称为“回合”)需要更多时间,但可以计算出更好的近似值。 LS层次结构中的算法基于线性规划松弛,而功能更强大的LS +层次结构中的算法则基于半定规划松弛。最著名的近似算法位于LS +层次结构的前两三个级别内,包括最近著名的Goemans-Williamson [27]和Arora-Rao-Vazirani [7]分别针对MAX-CUT和SPARSEST-CUT的近似算法。因此,了解这些算法系列的功能似乎很重要。对于一些重要问题,我们为LS和LS +层次结构获得了新的下界。在所有情况下,我们在这些层次结构中排除的近似值都不会被已知的基于PCP的参数排除。而且,与基于PCP的不可逼近结果不同,我们所有的结果都是无条件的,并且不依赖于任何计算复杂性假设。我们证明的下限如下:(1)对于VERTEX COVER,我们表明需要LS的O(log n)个回合才能获得2-ε近似值,而对于1.5-ε近似则需要O(log 2 n)个回合。 (2)对于MAX-3SAT和SET COVER,我们表明,对于任何非平凡逼近,都需要LS +的O(n)个回合。 (3)对于秩k的超图上的超图VERTEX COVER,我们表明k-1-ε逼近需要LS +的O(n)个回合。 (4)对于秩为k的超图上的超图VERTEX COVER,我们证明了k-epsilon逼近需要LS的O(log log n)轮。

著录项

  • 作者

    Tourlakis, Iannis.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

  • 入库时间 2022-08-17 11:40:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号