首页> 外文学位 >Grain growth kinetics in microphase separated An/Bn star block copolymers.
【24h】

Grain growth kinetics in microphase separated An/Bn star block copolymers.

机译:微相分离的An / Bn星型嵌段共聚物中的晶粒生长动力学。

获取原文
获取原文并翻译 | 示例

摘要

Currently, there is tremendous interest in using block copolymers to generate nanostructures where a critical issue is the control of long range order. This dissertation focuses on how molecular architecture of block copolymers influences the long range order. Using a series of AnBn star block copolymers with different numbers of arms (n = 1, 2, 4 and 16), the effect of molecular architecture on the grain growth kinetics is investigated by both thermal annealing and annealing in supercritical carbon dioxide (CO 2). Across this entire series of materials, all the A arms are polystyrene (PS) blocks from the same anionically synthesized batch, and all the B arms are polyisoprene (PI) blocks from the same anionically synthesized batch. Thus, all the star block copolymers employed in this study are composed of the same A and B arms linked together in symmetric numbers and the only difference within this series is the number of arms, n.; The grain growth kinetics of these AnBn materials is then monitored in real space by transmission electron microscopy (TEM), followed by subsequent micrograph image analysis. It is found that the molecular architecture influences the grain growth kinetics of these An Bn star block copolymers significantly under both thermal and supercritical CO2 annealing. Their grain growth kinetics shows a strong dependence on the number of arms. Also, the grain coarsening kinetics followed a scaling law as V ∼ tbeta, where V is the characteristic grain volume and t is annealing time. Under simple thermal annealing, the exponent, beta, is found to be about 0.2 for the A1B1 diblock copolymer (AnBn with n = 1) and 0.4 for all three star block copolymers with n = 2, 4 and 16. Meanwhile, under supercritical CO2 annealing, the grain growth dynamics of these AnB n stars with n = 2, 4, and 16 is found to be the same as that of the same AnBn materials under thermal annealing. However, the grain growth kinetics of the A1B1 diblock is dramatically enhanced in supercritical CO2 relative to thermal annealing. Comparison of the scaling relationships strongly suggests that the difference in grain growth between the A1B1 diblock and the AnB n star block copolymers can be attributed to the difference in chain entanglements and to the thermodynamic barrier to diffusion perpendicular to the lamellar layers.
机译:当前,使用嵌段共聚物产生纳米结构引起了极大的兴趣,其中关键问题是远程顺序的控制。本文主要研究嵌段共聚物的分子结构如何影响长程有序化。使用一系列具有不同臂数(n = 1、2、4和16)的AnBn星形嵌段共聚物,通过热退火和超临界二氧化碳(CO 2)退火研究了分子结构对晶粒生长动力学的影响。 )。在整个材料系列中,所有A臂均为同一阴离子合成批次的聚苯乙烯(PS)嵌段,所有B臂均为同一阴离子合成批次的聚异戊二烯(PI)嵌段。因此,本研究中使用的所有星形嵌段共聚物均由相同的A和B臂组成,它们以对称数连接在一起,而该系列中唯一的区别是臂数n。然后,通过透射电子显微镜(TEM)在实际空间中监视这些AnBn材料的晶粒生长动力学,随后进行显微图像分析。发现在热退火和超临界CO 2退火下,分子结构都会显着影响这些An Bn星形嵌段共聚物的晶粒生长动力学。它们的晶粒生长动力学显示出对臂数的强烈依赖性。另外,晶粒粗化动力学遵循比例定律,为V〜tbeta,其中V是特征晶粒体积,t是退火时间。在简单的热退火条件下,发现A1B1双嵌段共聚物(AnBn,n = 1)的指数约为0.2,而所有n = 2、4和16的所有三种星形嵌段共聚物的指数β约为0.4。退火后,发现这些n = 2、4和16的AnB n星的晶粒生长动力学与相同的AnBn材料在热退火下的晶粒生长动力学相同。但是,相对于热退火,在超临界CO2中,AlB1双嵌段的晶粒生长动力学得到显着增强。比例关系的比较有力地表明,AlB1双嵌段共聚物和AnB n星型嵌段共聚物之间晶粒长大的差异可以归因于链缠结的差异以及垂直于层状层扩散的热力学障碍。

著录项

  • 作者

    Hu, Xiaochuan.;

  • 作者单位

    University of Massachusetts Amherst.;

  • 授予单位 University of Massachusetts Amherst.;
  • 学科 Chemistry Polymer.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号