首页> 外文学位 >Modeling, dynamics, and control of the Czochralski crystal growth process.
【24h】

Modeling, dynamics, and control of the Czochralski crystal growth process.

机译:Czochralski晶体生长过程的建模,动力学和控制。

获取原文
获取原文并翻译 | 示例

摘要

Czochralski crystal growth is a widely used technology for manufacturing semiconductor crystals. Currently, semiconductor manufacturers desire to increase the crystal diameter in order to minimize the unit cost per chip during wafer processing while also reducing dislocation density and micro defect level in order to fabricate circuits with decreasing line widths. However, the ability to meet these advanced manufacturing objectives is limited by the current process control architecture since it has not been explicitly designed to deal with important process complexities including the nonlinear and time varying dynamics and cross coupled physics. In order to design a better control system, a process model is developed to reflect the real equipment features of commercial scale Czochralski crystal growth furnaces and capture the fundamental process physics governed by heat and mass transport processes. The model is used to study the system dynamic characteristics and input-output relations in order to develop an improved control structure and control algorithm.; The model captures three process features critical to understanding the fundamental process physics and dynamics: (a) the influence of crystal geometry variations on the radiation heat transfer and the resulting nonlinear growth dynamics, (b) the curved interface shape between the melt and crystal determined by the changing thermal fields and its effect on dynamics and control objectives, and (c) the time varying nature of the batch process caused by the melt height drop, crucible lift, and crystal lengthening.; To aid control system development, the difference between the linear and nonlinear dynamics is investigated from both system and physics point of view. It is shown that the linear dynamics provides the proper basis for controller design. Variations in the process dynamics are determined as a function of different operating conditions such as the melt height and growth rate and are used to evaluate the need for adaptive control. The actuator effectiveness of pulling speed and heater power is studied in terms of meeting the process objectives. Limitations of the conventional control structure are identified through examination of experimental data. The performance of a new control structure based on controlling the melt surface temperature is evaluated.
机译:直拉晶体生长是一种广泛用于制造半导体晶体的技术。当前,半导体制造商期望增加晶体直径,以便在晶片处理期间最小化每个芯片的单位成本,同时还降低位错密度和微缺陷水平,以制造具有减小的线宽的电路。但是,满足这些高级制造目标的能力受到当前过程控制体系结构的限制,因为尚未明确将其设计为处理重要的过程复杂性,包括非线性和时变动力学以及交叉耦合物理。为了设计更好的控制系统,开发了一个过程模型以反映商业规模的切克劳斯基结晶生长炉的实际设备特征,并捕获受热和传质过程控制的基本过程物理。该模型用于研究系统的动态特性和输入输出关系,以开发改进的控制结构和控制算法。该模型捕获了三个过程特征,这些特征对于理解基本的过程物理和动力学至关重要:(a)晶体几何形状变化对辐射传热的影响以及由此产生的非线性生长动力学,(b)确定熔体和晶体之间的弯曲界面形状通过变化的热场及其对动力学和控制目标的影响,以及(c)由熔体高度下降,坩埚升程和晶体伸长导致的分批过程的时变性质。为了帮助控制系统的发展,从系统和物理的角度研究了线性和非线性动力学之间的差异。结果表明,线性动力学为控制器设计提供了适当的基础。根据不同的操作条件(例如熔体高度和生长速率)确定过程动力学的变化,并用于评估对自适应控制的需求。从满足过程目标的角度研究了执行器的牵引速度和加热器功率的有效性。通过检查实验数据可以确定传统控制结构的局限性。评估了基于控制熔体表面温度的新型控制结构的性能。

著录项

  • 作者

    Duanmu, Ning.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号