首页> 外文学位 >Investigations of tethering induced injury response in brain tissue by intracortical implants through modeling and in vivo experiments.
【24h】

Investigations of tethering induced injury response in brain tissue by intracortical implants through modeling and in vivo experiments.

机译:通过建模和体内实验研究拴系皮质植入物对大脑组织的系链诱导的损伤反应。

获取原文
获取原文并翻译 | 示例

摘要

One of the limitations of intracortical microelectrodes in chronic applications is their inability to transduce signals of interest for sustained periods of time. Of the many failure modes, the chronic tissue response (CTR) evoked by the continued presence of these sensors in the brain tissue is of particular interest to neural engineers. Thus mitigating this response is of the utmost importance in furthering the usage of these implants for chronic applications.; In this study, the effect of relative motion of implants with respect to brain tissue (micromotion) in inducing CTR was tested by (1) developing a finite-element model to simulate interfacial strain induced by micromotion and quantifying the injury response evoked by (2) implants in three tethering configurations and (3) stiff and flexible implant substrates through quantitative immunohistochemistry (IHC). Results from these experiments are detailed below. (1) A 3-D finite-element model of the probe-brain tissue microenvironment was developed and three candidate substrates were simulated. A tangential tethering force resulted in 94% reduction in strain value at the tip of the polyimide probe track in the tissue, whereas the simulated "soft" probe induced two orders of magnitude smaller values of strain compared to a simulated silicon probe. (2) Untethered implants caused significantly smaller neuronal loss than both conventionally tethered and flexibly tethered implants in the first 25 mum from the implant-tissue interface (32%, 56% and 54%, respectively) (p 0.05). Based on the evidence, the sustained presence of a transcranial interconnect attached to an implant is believed to be more important in determining the injury response than the interconnect flexibility in chronic intracortical implants. (3) "Rigid" (parylene) implants caused significantly smaller neuronal loss and smaller increase in non-neuronal cells than "flexible" (polydimethylsiloxane) implants. The apparent contradiction was explained by the hydrophobic nature and the resulting adsorption of proteins onto the PDMS substrate.; The results suggest that modulating mechanical stiffness of implant materials alone has limited effect on CTR and that a complex problem like this could be best addressed by a combination of techniques.
机译:皮质内微电极在长期应用中的局限性之一是它们无法在持续的时间段内转导感兴趣的信号。在许多故障模式中,这些传感器在脑组织中的持续存在引起的慢性组织反应(CTR)是神经工程师特别感兴趣的。因此,在进一步将这些植入物用于慢性应用中时,减轻这种反应至关重要。在这项研究中,通过(1)开发有限元模型来模拟微运动引起的界面应变并量化由(2)引起的损伤反应,来测试植入物相对于脑组织的相对运动(微运动)诱导CTR的作用。 )三种束缚配置的植入物,以及(3)通过定量免疫组织化学(IHC)的刚性和柔性植入物基底。这些实验的结果详述如下。 (1)建立了探针脑组织微环境的3-D有限元模型,并模拟了三种候选基质。切向束缚力使组织中聚酰亚胺探针轨道末端的应变值降低了94%,而与模拟硅探针相比,模拟“软”探针引起的应变值小了两个数量级。 (2)在从植入物-组织界面开始的前25个妈妈中,非拴系植入物引起的神经元损失明显小于传统的拴系植入物和柔性拴系植入物(分别为32%,56%和54%)(p <0.05)。基于证据,与慢性植入物相比,经颅互连件与植入物相连的持续存在比互连件的柔韧性在确定损伤反应中更为重要。 (3)与“柔性”(聚二甲基硅氧烷)植入物相比,“刚性”(聚对二甲苯)植入物引起的神经元损失显着更小,非神经元细胞的增加也较小。明显的矛盾是由疏水性和由此产生的蛋白质在PDMS底物上的吸附所解释的。结果表明,仅调节植入物材料的机械刚度对CTR的影响有限,并且可以通过多种技术来最好地解决此类复杂问题。

著录项

  • 作者

    Subbaroyan, Jeyakumar.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Biology Neuroscience.; Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经科学;生物医学工程;
  • 关键词

  • 入库时间 2022-08-17 11:40:31

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号