首页> 外文学位 >Design and optimization of node architecture for application specific multi-hop wireless networks.
【24h】

Design and optimization of node architecture for application specific multi-hop wireless networks.

机译:针对专用多跳无线网络的节点体系结构的设计和优化。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, we focus on the design and optimization of the node architecture for target specific applications under the 802.11-based multi-hop wireless network that has been recently spotlighted from the public domain. We consider two target applications: compression and packet aggregation algorithms on the Wireless Mesh Network (WMN), and a multi-modal tracking system underlying the multi-hop wireless network.;For the tracking system, we develop a multi-modal sensor-based tracking model where acoustic sensors mainly track the target objects and visual sensors compensate the tracking errors. We initially discover a network synchronization problem caused by the different location and traffic characteristics of multi-modal sensors, and non-synchronized arrival of the captured sensor data at a processing Server. We show the improved tracking accuracy from visual compensation in ideal case is severely degraded when the synchronization problem is involved in real situations. For the possible solution for the problem, we differentiate the service level of sensor traffic based on Weight Round Robin (WRR) scheduling at the Routers. The weighting factor allocated to each queue is calculated by a proposed Delay-based Weight Allocation (DWA) algorithm. In addition, to numerically predict the number of success of the visual compensation, we propose a Statistical Estimation Algorithm (SEA) which is based on traffic measurement, random generation of transmission delay for sensor data, and statistical estimation. Based on the SEA, we propose an on-line version of the SEA called Statistical Estimation and Adaptation Algorithm (SEA2), in which the acoustic sensor's object sampling interval is automatically adapted to achieve a certain level of tracking accuracy.;To conduct the design and optimization tasks of the compression and packet aggregation, we propose a profile-based network and hardware co-simulation method to characterize the global WMN performance as well as the real-timing nodal behaviors. The WMN is equipped by a dedicated hardware platform possibly configured as a network processor. For the compression, RObust Header Compression (ROHC) is adopted. The co-simulation method integrates the network level simulator, NS-2 and hardware level simulator, SystemC. In this approach, we first insert the modules of ROHC and packet aggregation algorithms into the network simulator hierarchy, and measure the packet arrival times. Then, the corresponding hardware architecture is designed by SystemC for profiling the hardware delay appeared in encoding and de-coding packets. Finally, the traced hardware delays are applied into the network level simulator to extract real-timing WMN behaviors changed by the hardware operation in each mesh router. Additionally, to accurately predict the capacity of a hardware design, we propose a numerical analysis method by using the open Jackson queueing network. The modeled queue systems are one-to-one mapped into the constructed hardware components to characterize the concurrent operations and interactional relationship between encoding and decoding paths in ROHC.
机译:在本文中,我们重点研究了基于802.11的多跳无线网络下针对特定目标应用的节点体系结构的设计和优化,该网络最近已受到公共领域的关注。我们考虑了两个目标应用:无线网状网络(WMN)上的压缩和数据包聚合算法以及位于多跳无线网络下的多模式跟踪系统。对于跟踪系统,我们开发了基于多模式传感器的声传感器主要跟踪目标对象,视觉传感器补偿跟踪误差的跟踪模型。我们最初发现了一个网络同步问题,该问题是由多模式传感器的不同位置和流量特性以及捕获的传感器数据在处理服务器上的不同步到达引起的。我们显示,在实际情况下涉及同步问题时,理想情况下视觉补偿所提高的跟踪精度会严重降低。为了解决该问题,我们基于路由器的加权轮循(WRR)调度来区分传感器流量的服务水平。通过建议的基于延迟的权重分配(DWA)算法计算分配给每个队列的权重因子。另外,为了用数字方式预测视觉补偿的成功次数,我们提出了一种统计估计算法(SEA),该算法基于流量测量,传感器数据传输延迟的随机生成以及统计估计。基于SEA,我们提出了SEA的在线版本,称为统计估计和自适应算法(SEA2),在该版本中,声传感器的对象采样间隔会自动调整以达到一定水平的跟踪精度。以及压缩和数据包聚合的优化任务,我们提出了一种基于配置文件的网络和硬件协同仿真方法,以表征全局WMN性能以及实时时序节点行为。 WMN配备有可能配置为网络处理器的专用硬件平台。对于压缩,采用RObust标头压缩(ROHC)。协同仿真方法集成了网络级模拟器NS-2和硬件级模拟器SystemC。在这种方法中,我们首先将ROHC和数据包聚合算法的模块插入网络模拟器层次结构,并测量数据包到达时间。然后,由SystemC设计相应的硬件体系结构,以分析出现在编码和解码数据包中的硬件延迟。最后,将跟踪的硬件延迟应用于网络级仿真器,以提取由每个网状路由器中的硬件操作改变的实时TMN行为。此外,为了准确地预测硬件设计的容量,我们提出了一种使用开放式Jackson排队网络的数值分析方法。建模的队列系统一对一映射到构造的硬件组件中,以表征ROHC中的并发操作以及编码和解码路径之间的交互关系。

著录项

  • 作者

    Jung, Sangkil.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号