首页> 外文学位 >Evaluation of Agrobacteria-mediated Transient Expression of Cell Wall Degrading Enzymes as a Biological Pretreatment Process for Cellulosic Biofuel Production.
【24h】

Evaluation of Agrobacteria-mediated Transient Expression of Cell Wall Degrading Enzymes as a Biological Pretreatment Process for Cellulosic Biofuel Production.

机译:农杆菌介导的细胞壁降解酶瞬时表达的评估作为纤维素生物燃料生产的生物预处理过程。

获取原文
获取原文并翻译 | 示例

摘要

The United States has mandated that 16 billion gallons of cellulosic biofuels be produced annually by 2022. This production process includes the saccharification of the plant cell wall into sugars by cell wall degrading (CWD) enzymes for fermentation. Together, the pretreatment and saccharification steps are a significant cost of the process. Expressing the cell wall degrading enzymes recombinantly in the biomass substrate could potentially reduce the need for physical pretreatment and decrease the need for exogenously added enzymes. In recent years, it has been determined that transient expression in plants can produce high yields of heterologous proteins.;A combination of synergistic enzymes are required to degrade cellulose and hemicellulose in the plant cell wall. Here, thermostable cellobiohydrolase I (CBHI) from Thermoascus aurantiacus, and beta-glucosidase (BglB) and beta-xylosidase (BXyl) from Thermatoga maritima were transiently expressed in N. benthamiana leaves through agroinfiltration. The production of these enzymes under several vector systems were compared. For BglB and BXyl, the highest expression was found using the Tobacco mosaic virus-based TRBO system, resulting in 28 and 206 mg/kg fresh weight, assuming specific activities of 7.7 U/mg BglB and 1.7 U/mg BXyl. For CBHI, the highest expression levels were found using Cucumber mosaic virus-based CMVar system at 338 mg/kg fresh weight, assuming a specific activity of 0.11 U/mg CBHI. The pH and temperature profiles were determined for each enzyme, concluding that all enzymes have >80% activity at pH 5.0 and 70C.;Previous studies have shown that constitutive expression of endoglucanase I (E1) from Acidothermus cellulolyticus increases hydrolysis rates in transgenic Nicotiana tabacum plants. Here, the autohydrolysis potential of transiently expressed E1 in wild-type N. benthamiana leaves was evaluated. Biomass composition analysis was performed to determine the effects of agroinfiltration and the transient expression of E1. It was found that agroinfiltration decreases structural glucan content by 60%. The transient expression of E1 did not alter structural glucan content, indicating that it was not active at plant growth or incubation temperatures. Hydrolysis studies were performed with an exogenously added commercial cellulase cocktail on 1) wild type, 2) wild type with additional exogenously added E1, and 3) agroinfiltrated with transiently expressed E1 in N. benthamiana leaves. Transient expression of E1 increased released sugars over 24 hours at 50C. Together these studies indicate that while transient expression of E1 increases hydrolysis rates, total potential glucose yields are significantly decreased.
机译:美国已强制要求到2022年每年生产160亿加仑的纤维素生物燃料。该生产过程包括通过发酵的细胞壁降解(CWD)酶将植物细胞壁糖化为糖。总之,预处理和糖化步骤是该过程的重大成本。在生物质底物中重组表达细胞壁降解酶可以潜在地减少对物理预处理的需要并减少对外源添加的酶的需要。近年来,已经确定在植物中的瞬时表达可以产生高产量的异源蛋白质。需要协同酶的组合来降解植物细胞壁中的纤维素和半纤维素。在这里,来自橙色嗜热气单胞菌的热稳定纤维二糖水解酶I(CBHI),以及来自滨海烟草的β-葡萄糖苷酶(BglB)和β-木糖苷酶(BXyl)通过农杆菌浸润在本氏烟草中瞬时表达。比较了几种载体系统下这些酶的产生。对于BglB和BXyl,假设基于7.7 U / mg BglB和1.7 U / mg BXyl的比活,使用基于烟草花叶病毒的TRBO系统发现了最高的表达,导致鲜重为28和206 mg / kg。对于CBHI,假定比活为0.11 U / mg CBHI,使用基于黄瓜花叶病毒的CMVar系统在338 mg / kg鲜重下发现最高表达水平。确定每种酶的pH和温度曲线,包括所有酶在pH 5.0和70°C下均具有> 80%的活性;先前的研究表明,纤维素解酸酸内切葡聚糖酶I(E1)的组成型表达可提高转基因烟草中的水解速率。植物。在这里,评估了野生型本生烟草中瞬时表达的E1的自水解潜力。进行生物量组成分析以确定农业渗透和​​E1的瞬时表达的影响。发现土壤浸润使结构葡聚糖含量降低了60%。 E1的瞬时表达没有改变结构葡聚糖含量,表明它在植物生长或孵育温度下不活跃。用外源添加的商业纤维素酶混合物对1)野生型,2)野生型和其他外源添加的E1以及3)用瞬时表达的E1农杆菌渗入本氏烟草中进行了水解研究。 E1的瞬时表达在50℃下24小时内增加了释放的糖。这些研究在一起表明,尽管E1的瞬时表达提高了水解速率,但总潜在葡萄糖产量却显着降低。

著录项

  • 作者

    Anthony, Elizabeth Anne.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Alternative Energy.;Plant sciences.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 239 p.
  • 总页数 239
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号