首页> 外文学位 >Non-thermal plasma synthesis and passivation of luminescent silicon nanocrystals.
【24h】

Non-thermal plasma synthesis and passivation of luminescent silicon nanocrystals.

机译:发光硅纳米晶体的非热等离子体合成和钝化。

获取原文
获取原文并翻译 | 示例

摘要

A novel reactor for the controlled synthesis of small silicon nanocrystals has been developed. A non-thermal plasma is generated in a quartz tube through which a silane containing mixture is flown, resulting in the nucleation and growth of silicon nanoparticles. Given the short residence time in the reactor (10 ms), very small crystallites are produced, and quantum confinement effects lead to the observation of intense visible photoluminescence when the particles are excited by UV irradiation. The system is capable of producing up to 50 mg/hr of luminescent powder.; The mechanism leading to the formation of small crystallites has been investigated by studying the interaction of the silicon cluster with the surrounding plasma, in particular with argon ions and with atomic hydrogen. Ion and atomic hydrogen densities have been experimentally measured. The particle temperature exceeds the background gas temperature of approximately 100 K, and the instantaneous temperature of very small clusters exceeds the gas temperature of several hundreds of degrees. This behavior likely leads to the formation of high quality crystals.; As-produced silicon nanocrystals have a hydrogen-terminated surface, which is an ideal chemical configuration for grafting alkenes onto the particle surface. Liquid phase treatment of plasma-produced silicon nanocrystals with 1-dodecene leads to the synthesis of a clear and stable colloidal dispersion of silicon particles. Fluorescent quantum yields exceeding 60% have been measured for silicon inks with a peak emission wavelength around 800 run. This is the highest ensemble quantum yield ever reported for the case of silicon.; The disadvantages of the liquid phase passivation scheme, long reaction time and the use of solvents, are overcome by using the in-flight plasma initiated passivation scheme described in this thesis. Various molecules have been successfully reacted with the silicon crystals in the gas-phase, and a silicon ink can be readily obtained without using liquid-phase processing. The process is promising for attaching short molecules to the particle surface, necessary for improving the electrical properties of the quantum dot, and for realizing stable dispersion of silicon particles in water.
机译:已经开发了用于小硅纳米晶体的受控合成的新型反应器。在石英管中产生非热等离子体,在该石英管中流过含硅烷的混合物,从而导致硅纳米颗粒的形核和生长。由于在反应器中的停留时间很短(<10 ms),因此会产生非常小的微晶,当粒子被紫外线照射激发时,量子限制效应导致观察到强烈的可见光致发光。该系统能够产生高达50mg / hr的发光粉末。通过研究硅团簇与周围等离子体,特别是与氩离子和原子氢的相互作用,研究了导致形成微晶的机理。已经通过实验测量了离子和原子氢的密度。粒子温度超过约100 K的背景气体温度,非常小的簇的瞬时温度超过几百度的气体温度。这种行为可能导致形成高质量的晶体。所生产的硅纳米晶体具有氢封端的表面,这是用于将烯烃接枝到颗粒表面的理想化学构型。用1-十二碳烯对等离子体产生的硅纳米晶体进行液相处理,可以合成出透明,稳定的硅粒子胶体分散体。对于峰值发射波长约为800nm的硅油墨,已测得其荧光量子产率超过60%。这是硅情况下有史以来最高的集合量子产率。液相钝化方案的缺点,反应时间长和使用溶剂的缺点,通过使用本文描述的飞行中等离子体引发的钝化方案得以克服。各种分子已经成功地在气相中与硅晶体反应,并且无需使用液相处理就可以容易地获得硅墨水。该方法有望将短分子附着到粒子表面,这对于改善量子点的电性能以及实现硅粒子在水中的稳定分散是必不可少的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号