首页> 外文学位 >Mechanics of defective graphene sheets.
【24h】

Mechanics of defective graphene sheets.

机译:有缺陷的石墨烯片的力学。

获取原文
获取原文并翻译 | 示例

摘要

Graphene has recently emerged as one of the most exciting material systems to study due to its high strength and rigidity, high room temperature electron mobility, and unconventional quantum Hall effect. Defects, such as vacancies and interstitials, act as stress concentrators and scattering centers, significantly degrading both the mechanical properties and the electronic properties of graphene. Understanding the nucleation and motion of these defects is not only scientifically interesting, but also practically important as it provides physical insights to the graphene production. The central theme of this research is to develop and apply multiscale simulation techniques to uncover the underlying atomistic mechanisms without the limitations to the system size and time scales inherent to the fully atomistic models. In reflecting these efforts, this dissertation will cover three unified projects on the mechanics of graphene.The first part presents molecular dynamics simulations of ion irradiation of the edges of a cantilevered graphene. We found that graphene underwent deflection where the magnitude and the direction of deflection depend on the kinetic energy of the impacting ions. Besides providing atomic details of the edge morphologies, the molecular dynamics simulations revealed that the deflection of the graphene is caused by a competing mechanism of production and annihilation of interstitial- and vacancy-like defects in the course of ion irradiations. As free edge plays a critical role in the electrical properties of graphene, the simulation results provide useful insight into the edge engineering. The second part of the thesis involves the characterization of thermal activation of brittle and ductile fracture in graphene by using a pathway sampling scheme (nudged elastic band method). With this scheme, the time scale of atomistic simulations is substantially extended. It is concluded that the fracture of graphene takes a special mode, featuring alternating bond breaking and bond rotation at the crack tip. The third part focuses on quantifying the strain-mediated kinetics of migration of various defects in graphene. Migration of double-vacancy defects under combined thermal and mechanical loadings was studied using the reaction pathway nudged elastic band calculations. It was revealed that the migration kinetics of the defects depends not only on the level of the applied strain, but also on the direction along which the strain is applied. The results from the empirical potentials are compared to those from quantum mechanical calculations.
机译:石墨烯由于其高强度和刚度,高室温电子迁移率以及非常规的量子霍尔效应,最近已成为最令人兴奋的材料体系之一。诸如空位和间隙的缺陷充当应力集中器和散射中心,从而显着降低石墨烯的机械性能和电子性能。了解这些缺陷的形核和运动不仅在科学上很有趣,而且在实践上也很重要,因为它为石墨烯的生产提供了物理见解。这项研究的中心主题是开发和应用多尺度仿真技术,以揭示潜在的原子机制,而不受完全原子模型固有的系统大小和时间尺度的限制。为了反映这些努力,本文将涵盖三个有关石墨烯力学的统一项目。第一部分提供悬臂石墨烯边缘离子辐射的分子动力学模拟。我们发现石墨烯发生偏转,偏转的大小和方向取决于撞击离子的动能。除了提供边缘形态的原子细节外,分子动力学模拟还表明,石墨烯的挠曲是由离子辐射过程中间隙和空位状缺陷的产生和an灭的竞争机制引起的。由于自由边缘在石墨烯的电性能中起着至关重要的作用,因此仿真结果为深入研究边缘工程提供了有用的信息。论文的第二部分涉及通过使用路径采样方案(带动弹性带方法)表征石墨烯中的脆性和延性断裂的热活化特性。利用该方案,原子模拟的时间尺度被大大延长。结论是,石墨烯的断裂具有特殊的模式,其特征是裂纹尖端交替发生键断裂和键旋转。第三部分着重于量化应变介导的石墨烯中各种缺陷迁移的动力学。使用反应路径微调的弹性带计算研究了在热和机械载荷共同作用下双空位缺陷的迁移。结果表明,缺陷的迁移动力学不仅取决于所施加应变的水平,还取决于应变施加的方向。将经验势的结果与量子力学计算的结果进行比较。

著录项

  • 作者

    Terdalkar, Sachin S.;

  • 作者单位

    University of Arkansas.;

  • 授予单位 University of Arkansas.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号