首页> 外文学位 >Advanced approaches in information transmission and access control for wireless communication networks.
【24h】

Advanced approaches in information transmission and access control for wireless communication networks.

机译:无线通信网络中信息传输和访问控制的高级方法。

获取原文
获取原文并翻译 | 示例

摘要

Over the last two decades, wireless communication has seen tremendous growth and has been demonstrated as a robust voice and data transport mechanism. New wireless communication methods and services are enthusiastically adopted by people throughout the world. Driven by the ever increasing demand on high speed wireless multimedia services, development of highly reliable and more efficient wireless communication networks has become the ultimate goal of the research community. In this dissertation, we focus on efficient information transmission and medium access control (MAC) in wireless networks. More specifically, we aim to improve the reliability and efficiency of the wireless networks through the following research thrusts:; First, we investigate the channel tracking scheme in time-varying environments. Accurate channel estimation is essential in ensuring reliable information transmission. However, both time and frequency dispersions in mobile wireless channels cause significant challenges in channel estimation. Conventionally, for time-varying channels, pilot (training) signals are periodically transmitted to achieve accurate channel estimation. Such a scheme is not spectrally efficient due to the considerable overhead signals. In this dissertation, we propose a semi-blind approach to efficiently estimating fast fading channels and jointly detecting transmitted signals. The proposed scheme is shown to have high spectral efficiency and performance reliability. Additional efforts are devoted to studying the extreme case when there are unpredictable abrupt changes in the channel. We propose algorithms to detect such abrupt changes and suppress the possible error propagation. The proposed algorithms are demonstrated to be effective through simulations.; Next, we explore the MAC protocol design by taking into account the physical (PHY) layer channel capability. In conventional medium access control protocol designs, the physical layer is simply characterized using a binary collision model. Although the model provides a tractable path for network performance analysis, it fails to reflect the physical layer channel capability. Cross-layer medium access control protocol design, which exploits the physical layer signal processing capabilities for MAC performance improvement, has attracted considerable research attention. In this dissertation, taking a mutually interactive perspective, we propose to design an MAC protocol, named hybrid ALOHA, which is in favor of the physical layer, and the improved physical layer, in turn, improves the MAC performance in terms of throughput, stability and delay behavior. Both theoretical and simulation results show that significant performance improvement can be achieved by hybrid ALOHA, in comparison with traditional ALOHA.; Finally, from a mixed analog-digital perspective, we investigate a system with analog inputs and propose a source-aware information transmission scheme to minimize the average input-output distortion. After sampling and source coding, the digital bits could have different levels of significance, i.e., some bits could be more important than others. Such non-uniformity in source coding then calls for nonuniform information transmission to improve system performance. An unequal error protection scheme is proposed to minimize the average distortion. Simulation results demonstrate its effectiveness. Furthermore, a joint quantization-constellation design is investigated under the criterion of distortion minimization. The proposed method generalizes the concept of constellation design from the perspective of joint source-channel coding. The simplicity and power efficiency of the proposed schemes make them particularly attractive for systems with tight power constraints, such as wireless sensor networks and space communications.
机译:在过去的二十年中,无线通信获得了巨大的发展,并已被证明是一种强大的语音和数据传输机制。新的无线通信方法和服务被全世界的人们热情地采用。在对高速无线多媒体服务的需求不断增长的推动下,高度可靠,更高效的无线通信网络的发展已成为研究界的最终目标。本文主要研究无线网络中有效的信息传输和媒体访问控制(MAC)。更具体地说,我们旨在通过以下研究重点来提高无线网络的可靠性和效率:首先,我们研究时变环境中的信道跟踪方案。准确的信道估计对于确保可靠的信息传输至关重要。但是,移动无线信道中的时间和频率色散都对信道估计造成重大挑战。传统上,对于时变信道,周期性地发送导频(训练)信号以实现精确的信道估计。由于大量的开销信号,这种方案在频谱上不是有效的。本文提出了一种半盲方法,可以有效地估计快速衰落信道并共同检测发射信号。该方案具有较高的频谱效率和性能可靠性。当通道中发生不可预测的突然变化时,需要付出额外的努力来研究极端情况。我们提出了算法来检测这种突然的变化并抑制可能的错误传播。通过仿真证明了所提出的算法是有效的。接下来,我们通过考虑物理(PHY)层通道能力来探索MAC协议设计。在常规的媒体访问控制协议设计中,使用二进制冲突模型来简单地描述物理层。尽管该模型为网络性能分析提供了一条易于处理的路径,但它无法反映物理层通道的能力。利用物理层信号处理能力提高MAC性能的跨层媒体访问控制协议设计吸引了相当多的研究关注。本文从交互的角度出发,提出了一种MAC协议,即混合ALOHA,该协议有利于物理层,而经过改进的物理层又从吞吐量,稳定性等方面提高了MAC性能。和延迟行为。理论和仿真结果均表明,与传统ALOHA相比,混合ALOHA可以显着提高性能。最后,从混合模数角度出发,我们研究了具有模拟输入的系统,并提出了一种源感知信息传输方案,以最大程度地减少平均输入输出失真。在采样和源编码之后,数字位可能具有不同的重要性级别,即某些位可能比其他位更重要。然后,源代码编码中的这种不均匀性要求不均匀的信息传输以提高系统性能。提出了一种不平等的错误保护方案,以使平均失真最小。仿真结果证明了其有效性。此外,在失真最小化的准则下研究了联合量化星座设计。从联合源信道编码的角度出发,该方法概括了星座设计的概念。所提出的方案的简单性和功率效率使其对于具有严格功率限制的系统(例如无线传感器网络和空间通信)特别有吸引力。

著录项

  • 作者

    Wang, Huahui.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号