首页> 外文学位 >Mathematical modeling of signal transduction and cell motility in tumor angiogenesis.
【24h】

Mathematical modeling of signal transduction and cell motility in tumor angiogenesis.

机译:肿瘤血管生成中信号转导和细胞运动的数学模型。

获取原文
获取原文并翻译 | 示例

摘要

In recent years, tumor-induced angiogenesis has become an important field of research because it represents a crucial step in the development of malignant tumors. The existing mathematical models have been able to reproduce some characteristics of angiogenesis, such as capillary loop formation and the dynamics of blood vessels, but much remains to be done until a full understanding of angiogenesis is achieved. There are a number of basic questions about cell movement that are unresolved, including the microscopic issues of how a cell decides when and how long to move. We have developed a discrete cell model for capillary tube formation of endothelial cells (ECs) that incorporates a realistic model for signal transduction, vascular endothelial growth factor (VEGF) production, and VEGF release. This allows us to explore the effect on macroscopic networks of changes in the microscopic rules by which cells determine their direction and duration of movement. In our hybrid discrete/continuum model the cells are treated as individual units and the extracellular VEGF evolves according to a continuum reaction-diffusion equation. A detailed description of signal transduction is possible in such a model and movement rules based on intracellular dynamics can be explored. The signal transduction part incorporates known biology more completely than any other model and involves 18 variables and 14 biochemical reactions. Using the law of mass action, these lead to a system of ten differential equations and auxiliary algebraic equations for the time evolution of the intracellular species. The evolution of extracellular VEGF is incorporated and described by a reaction-diffusion equation. The algorithm used to solve these equations follows an earlier algorithm developed by Dallon and Othmer in studying the aggregation of Dictyostelium discoideum, The hybrid mathematical model reproduces a number of experimental observations and gives further insight into the capillary network formation process. We investigate the effect of different model parameters on the final aggregation patterns. Our results provide strong evidence that the endothelial cell density, their activity, and the range of activity of intracellular and extracellular VEGF regulate the vascular network formation and its size.
机译:近年来,肿瘤诱导的血管生成已成为重要的研究领域,因为它代表了恶性肿瘤发展的关键步骤。现有的数学模型已经能够重现血管生成的某些特征,例如毛细血管formation的形成和血管的动力学,但是要完全了解血管生成,还有许多工作要做。有许多关于细胞运动的基本问题尚未解决,包括细胞如何决定何时以及何时运动的微观问题。我们已经开发出用于内皮细胞毛细管形成(EC)的离散细胞模型,该模型结合了信号转导,血管内皮生长因子(VEGF)产生和VEGF释放的现实模型。这使我们能够探索微观规则变化对宏观网络的影响,细胞通过这些规则来确定其运动方向和持续时间。在我们的离散/连续混合模型中,将细胞视为单个单元,并且细胞外VEGF根据连续反应扩散方程演化。在这种模型中信号转导的详细描述是可能的,并且可以探索基于细胞内动力学的运动规则。信号转导部分比其他任何模型都更全面地整合了已知生物学,涉及18个变量和14个生化反应。利用质量定律,这些导致了一个由十个微分方程和辅助代数方程组成的系统,用于细胞内物质的时间演化。细胞外VEGF的进化被纳入并通过反应扩散方程来描述。用于求解这些方程式的算法遵循Dallon和Othmer在研究盘基网柄菌的聚集过程中开发的较早算法。混合数学模型重现了许多实验观察结果,并进一步洞察了毛细管网络的形成过程。我们调查了不同模型参数对最终聚集模式的影响。我们的结果提供了有力的证据,证明内皮细胞的密度,其活性以及细胞内和细胞外VEGF的活性范围可调节血管网络的形成及其大小。

著录项

  • 作者

    Tarfulea, Nicoleta Eugenia.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号