首页> 外文学位 >A fast hybrid method for analysis and design of photonic structures.
【24h】

A fast hybrid method for analysis and design of photonic structures.

机译:一种用于分析和设计光子结构的快速混合方法。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents a very effcient hybrid method for analysis and design of optical and passive photonic devices. The main focus is on unbounded wave structures. This class of photonic systems are in general very large in terms of the wavelength of the driving optical sources. The size of the problem space makes the electromagnetic modelling of these structure a very challenging problem. Our approach and main contribution has been to combine or hybridize three methods that together can handle this class of photonic structures as a whole.; The basis of the hybrid method is a novel Gaussian Beam Tracing method GBT. Gaussian Beams (GB) are very suitable elementary functions for tracing and tracking purposes due to their finite extent and the fact that they are good approximations for actual laser beams. The GBT presented in this thesis is based on the principle of phase matching. This method can be used to model the reflection and refraction of Gaussian beams from general curved surfaces as long as the curvature of the surface is relatively small. It can also model wave propagation in free space. The developed GBT is extremely fast as it essentially uses simple algebraic equations to find the parameters of the re ected and refracted beams once the parameters of the incident beam is known. Therefore sections of the systems whose dimensions are large relative to the optical wavelength are simulated by the GBT method.; Fields entering a photonic system may not possess an exact Gaussian profile. For example if an aperture limits the input laser to the system, the field is no longer a GB. In these and other similar cases the field at some aperture plane needs to be expanded into a sum of GBs. Gabor expansion has been used for this purpose. This method allows any form of field distribution on a flat or curved surface to be expanded into a sum of GBs. The resultant GBs are then launched inside the system and tracked by GBT. Calculation of the coefficients of the Gabor series is very fast (1-2 minutes on a typical computer for most applications).; In some cases the dimensions or physical properties of structures do not allow the application of the GBT method. For example if the curvature of a surface is very large (or its radius of curvature is very small) or if the surface contains sharp edges or sub-wavelength dimensions GBT is no longer valid. In these cases we have utilized the Finite Difference Time Domain method (FDTD). FDTD is a rigorous and very accurate full wave electromagnetic solver. The time domain form of Maxwell's equations are discretized and solved. No matrix inversion is needed for this method. If the size of the structure that needs to be analyzed is large relative to the wavelength FDTD can become increasingly time consuming. Nevertheless once a structure is simulated using FDTD for a given input, the output is expanded using Gabor expansion and the resultant beams can then be efficiently propagated through any desired system using GBT. For example if a diffraction grating is illuminated by some source, once the re ection is found using FDTD, it can be propagated very efficiently through any kind of lens or prism (or other optical structures) using GBT. Therefore the overall computational efficiency of the hybrid method is very high compared to other methods.
机译:本文提出了一种用于光学和无源光子器件分析和设计的非常有效的混合方法。主要关注于无界波结构。就驱动光源的波长而言,这类光子系统通常非常大。问题空间的大小使这些结构的电磁建模成为一个非常具有挑战性的问题。我们的方法和主要贡献是组合或混合了三种可以整体处理此类光子结构的方法。混合方法的基础是一种新颖的高斯光束跟踪方法GBT。高斯光束(GB)由于其有限的范围以及它们是实际激光束的良好近似值,因此非常适合用于跟踪和跟踪的基本功能。本文提出的GBT是基于相位匹配原理的。只要表面的曲率比较小,该方法就可以用来模拟高斯光束从一般曲面的反射和折射。它还可以模拟自由空间中的波传播。一旦知道入射光束的参数,开发的GBT就会非常快,因为它本质上是使用简单的代数方程式来找到反射光束和折射光束的参数。因此,通过GBT方法模拟尺寸相对于光波长较大的系统部分。进入光子系统的场可能没有确切的高斯分布。例如,如果孔径限制了系统的输入激光,则该场不再是GB。在这些和其他类似情况下,需要将某个孔径平面上的场扩展为GBs的总和。 Gabor扩展已用于此目的。此方法允许将平面或曲面上的任何形式的场分布扩展为GBs的总和。然后,生成的GB将在系统内部启动并由GBT跟踪。 Gabor系列的系数计算非常快(对于大多数应用,在典型计算机上为1-2分钟)。在某些情况下,结构的尺寸或物理属性不允许使用GBT方法。例如,如果某个表面的曲率非常大(或其曲率半径很小),或者该表面包含尖锐的边缘或亚波长尺寸,则GBT不再有效。在这些情况下,我们利用了时域有限差分法(FDTD)。 FDTD是一种严格且非常准确的全波电磁求解器。麦克斯韦方程的时域形式被离散化和求解。该方法不需要矩阵求逆。如果需要分析的结构的尺寸相对于波长较大,则FDTD会变得越来越耗时。但是,一旦使用FDTD对给定的输入对结构进行了仿真,就可以使用Gabor扩展来扩展输出,然后可以使用GBT将所得光束有效地传播通过任何所需的系统。例如,如果衍射光栅被某种光源照射,则使用FDTD找到反射后,就可以使用GBT将其非常有效地传播通过任何种类的透镜或棱镜(或其他光学结构)。因此,与其他方法相比,混合方法的总体计算效率非常高。

著录项

  • 作者

    Rohani, Arash.;

  • 作者单位

    University of Waterloo (Canada).;

  • 授予单位 University of Waterloo (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号