首页> 外文学位 >Investigating optical atom traps for Bose-Einstein condensate.
【24h】

Investigating optical atom traps for Bose-Einstein condensate.

机译:研究玻色-爱因斯坦凝聚物的光学原子阱。

获取原文
获取原文并翻译 | 示例

摘要

Scope and method of study. The purpose of this research was to make a Bose Einstein condensate (BEC) of Rb87 atoms using an all optical method. Specific attention was given to replacing the traditional magnetic traps with dipole traps created by high power, far off resonant CO2 laser beams (FORT) for trapping and evaporative cooling.; Findings and conclusions. Three major steps where identified necessary to realize a BEC: (a) preparing a source of cold atoms (magneto optical trap (MOT)), (b) loading atoms from the MOT to the FORT, (c) evaporative cooling the atoms in the FORT to nanoKelvin temperatures. Successful accomplishment of these steps lead us to create BEC. While investigating step (b), we found that the power in the CO2 laser does not affect the FORT population after a certain power is achieved. Also a strong correlation between the CO2 beam waist and the loading efficiency was observed. These findings led us to employ the concept of a time averaged potential to increase the trap's population. The basic idea was to sweep a tightly focused CO 2 beam while it was overlapped with the MOT. By sweeping the CO 2 beam rapidly, atoms could not react to the beam movement and therefore felt a time-averaged potential. These ideas were supported with the observation of lower temperatures for the trapped atoms in the time-averaged FORTS compared to the atoms trapped in the stationary FORT. By adiabatically damping the sweeping amplitude most of the atoms could be forced to accumulate into a non-time averaged trap with a tight waist. Using this technique a 100% increase in the loading efficiency of the FORT was observed.; Our numerical simulations showed that spherical aberration creates local intensity maxima along the CO2 beam propagation direction which are capable of trapping atoms. This prediction was confirmed by the experimental observation of well separated micro-optical traps. We found that the separation of the micro-optical traps could be changed, making them a suitable system for the study of quantum computation with neutral atoms. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
机译:研究范围和方法。这项研究的目的是使用全光学方法制造Rb87原子的玻色爱因斯坦凝聚物(BEC)。特别注意用高功率,远距离共振的CO2激光束(FORT)产生的偶极阱代替传统的磁阱,以捕获和蒸发冷却。结论和结论。确定实现BEC所需的三个主要步骤:(a)准备冷原子源(磁光阱(MOT)),(b)将原子从MOT加载到FORT,(c)蒸发冷却原子。提升至纳米开尔文温度。成功完成这些步骤使我们创建了BEC。在研究步骤(b)时,我们发现在达到一定功率后,CO2激光器中的功率不会影响FORT人口。还观察到了CO2束腰与装载效率之间的强烈相关性。这些发现促使我们采用时均潜力的概念来增加陷阱的数量。基本思想是扫除与MOT重叠的紧密聚焦的CO 2光束。通过快速扫掠CO 2束,原子不会对束的移动做出反应,因此感觉到了时均电位。与在固定的FORT中捕获的原子相比,在时间平均的FORTS中捕获的原子具有更低的温度,从而支持了这些观点。通过绝热衰减扫描振幅,大多数原子可能被迫积累到腰部紧实的非时间平均陷阱中。使用该技术,观察到FORT的装载效率提高了100%。我们的数值模拟表明,球面像差沿CO2束传播方向产生了局部强度最大值,能够捕获原子。通过对分离良好的微光阱进行实验观察,证实了这一预测。我们发现微光阱的间距可以改变,使其成为研究中性原子量子计算的合适系统。 (仅可从麻省理工学院图书馆14-0551室,剑桥,马萨诸塞州02139-4307;电话617-253-5668;传真617-253-1690获得副本。)

著录项

  • 作者

    Ahmadi, Peyman.;

  • 作者单位

    Oklahoma State University.;

  • 授予单位 Oklahoma State University.;
  • 学科 Physics Atomic.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子物理学、原子物理学;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号