首页> 外文学位 >Characterization of the cellular and biochemical mechanisms underlying the deleterious effects of IL-1beta to hypoxic neuronal injury.
【24h】

Characterization of the cellular and biochemical mechanisms underlying the deleterious effects of IL-1beta to hypoxic neuronal injury.

机译:IL-1β对缺氧性神经元损害的有害作用的细胞和生化机制的表征。

获取原文
获取原文并翻译 | 示例

摘要

Changes in interleukin-beta (IL-beta) levels and/or signaling have been implicated in the pathogenesis of cerebral ischemia; however, the mechanism(s) by which this occurs are unknown. Therefore, the overall goal of this thesis project was to investigate the cellular and biochemical pathway(s) by which this cytokine contributes to neuronal injury. To do so, a suitable in vitro model system was developed utilizing murine mixed neuronal/astrocyte cortical cell cultures. In this model, IL-1beta pre-treatment---simulating endogenous production of IL-1beta following cerebral ischemia---potentiated hypoxic neuronal injury, mimicking events in the ischemic penumbra. The injury process coincided with an increase in extracellular glutamate levels and NMDA receptor-mediated 45Ca2+ uptake, and was inhibited by glutamate receptor antagonism. Utilizing pharmacologic and genetic approaches we showed that the detrimental effects of IL-1beta in vitro were dependent on signaling through the IL-1 receptor type I (IL-1RI), a finding that was further confirmed by an in vivo approach, which demonstrated that IL-1RI-deficient mice were less susceptible to ischemic and excitotoxic injury. Utilizing chimeric cultures from IL-1RI-deficient mice, we then specifically identified astrocytes as the cell type mediating the ill effects of IL-1beta, since the increased glutamate accumulation, as well as the enhanced vulnerability to hypoxia that followed IL-1beta treatment, was not observed in chimeric cultures consisting of wild-type neurons plated on top of IL-1RI-deficient astrocytes. Furthermore, we showed that IL-1beta-mediated potentiation of hypoxic neuronal injury was inhibited in the presence of the cystine glutamate exchanger (system xc-)/mGluR1 antagonists but not by selective mGluR1 antagonists, nor were mGluR1-deficient cultures protected, indicating a causative role for system xc - in the injury process. Last, we demonstrated that this is due to a selective increase in system xc- velocity induced by astrocytic IL-1RI signaling, a change that becomes neurotoxic when energy deprivation results in reduced glutamate uptake via the sodium-dependent glutamate transporters (system XAG-). These data identify alterations in system xc- as a previously undescribed mechanism in the development and progression of cerebral ischemic injury and describe system xc- as a novel target for the development of neuroprotective treatments following cerebral ischemia.
机译:白介素-β(IL-β)水平和/或信号转导的改变与脑缺血的发病机制有关。但是,这种情况发生的机制尚不清楚。因此,本项目的总体目标是研究这种细胞因子导致神经元损伤的细胞和生化途径。为此,利用鼠类混合神经元/星形细胞皮层细胞培养物开发了合适​​的体外模型系统。在该模型中,IL-1beta预处理-模拟脑缺血后IL-1beta的内源性产生-增强缺氧性神经元损伤,模拟缺血半影中的事件。损伤过程与细胞外谷氨酸水平增加和NMDA受体介导的45Ca 2+吸收同时发生,并且受到谷氨酸受体拮抗作用的抑制。利用药理学和遗传学方法,我们显示了IL-1beta的体外有害作用取决于通过I型IL-1受体(IL-1RI)的信号传导,这一发现得到了体内方法的进一步证实,这表明IL-1RI缺陷小鼠对缺血和兴奋毒性损伤的敏感性较低。然后利用来自IL-1RI缺陷型小鼠的嵌合培养物,我们特异性地鉴定出星形胶质细胞是介导IL-1beta不良反应的细胞类型,因为随着谷氨酸盐积累的增加,以及IL-1beta处理后对缺氧的脆弱性增强,在由野生型神经元铺在IL-1RI缺陷星形胶质细胞顶部组成的嵌合培养物中未观察到“β-内酰胺酶”。此外,我们发现在存在胱氨酸谷氨酸交换剂(系统xc-)/ mGluR1拮抗剂的情况下,IL-1β介导的缺氧性神经元损伤的增强受到抑制,但不受选择性mGluR1拮抗剂的影响,也没有受到mGluR1缺陷型培养物的保护,这表明系统xc的致病作用-在伤害过程中。最后,我们证明了这是由于星形细胞IL-1RI信号传导诱导的系统xc-速度的选择性增加,当能量剥夺导致通过钠依赖性谷氨酸转运蛋白(系统XAG-)吸收的谷氨酸减少时,该变化变成神经毒性。 。这些数据将系统xc-的变化鉴定为脑缺血性损伤发展和进程中以前未描述的机制,并将系统xc-描述为脑缺血后神经保护疗法发展的新靶标。

著录项

  • 作者

    Fogal, Birgit.;

  • 作者单位

    University of Connecticut.;

  • 授予单位 University of Connecticut.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 223 p.
  • 总页数 223
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经科学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号