首页> 外文学位 >Anodized titania: Processing and characterization to improve cell-materials interactions for load bearing implants.
【24h】

Anodized titania: Processing and characterization to improve cell-materials interactions for load bearing implants.

机译:阳极氧化二氧化钛:进行处理和表征,以改善承重植入物的细胞材料相互作用。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this study is to investigate in vitro cell-materials interactions using human osteoblast cells on anodized titanium. Titanium is a bioinert material and, therefore, gets encapsulated after implantation into the living body by a fibrous tissue that isolates them from the surrounding tissues. In this work, bioactive nonporous and nanoporous TiO2 layers were grown on commercially pure titanium substrate by anodization process using different electrolyte solutions namely (1) H3PO 4, (2) HF and (3) H2SO4, (4) aqueous solution of citric acid, sodium fluoride and sulfuric acid. The first three electrolytes produced bioactive TiO2 films with a nonporous structure showing three distinctive surface morphologies. Nanoporous morphology was obtained on Ti-surfaces from the fourth electrolyte at 20V for 4h. Cross-sectional view of the nanoporous surface reveals titania nanotubes of length 600 nm. It was found that increasing anodization time initially increased the height of the nanotubes while maintaining the tubular array structure, but beyond 4h, growth of nanotubes decreased with a collapsed array structure. Human osteoblast (HOB) cell attachment and growth behavior were studied using an osteoprecursor cell line (OPC 1) for 3, 7 and 11 days. Colonization of the cells was noticed with distinctive cell-to-cell attachment on HF anodized surfaces. TiO2 layer grown in H2SO4 electrolyte did not show significant cell growth on the surface, and some cell death was also noticed. Good cellular adherence with extracellular matrix extensions in between the cells was noticed for samples anodized with H3PO 4 electrolyte and nanotube surface. Cell proliferation was excellent on anodized nanotube surfaces. An abundant amount of extracellular matrix (ECM) between the neighboring cells was also noticed on nanotube surfaces with filopodia extensions coming out from cells to grasp the nanoporous surface for anchorage. To better understand and compare cell-materials interactions, anodized nanoporous sample surfaces were etched with different patterns. Preferential cell attachment was noticed on nanotube surfaces compared to no cells on etched patterned surface. Cell adhesions and differentiation were more pronounced with vinculin protein and alkaline phosphatase, respectively, on anodized surfaces. MTT assays showed increase in living cell density and higher proliferation on H3PO4, HF and nanotube surfaces. When anodized surfaces were compared for cell materials interaction, it was noticed that each of the surfaces has different surface properties that led to variations in cell-materials interactions. It was clear that rough surface morphology, high surface energy, and low value of the contact angles were important factors for better cell materials interaction. Mineralization study was done in simulated body fluid (SBF) with ion concentration nearly equal to human blood plasma to further understand biomimetic apatite deposition behavior. Similar to cell-materials interaction, variation in mineral deposition behavior was also noticed for films grown with different electrolytes. These results clearly show that nonporous titania in H3PO4, HF electrolytes and nanotubes can significantly increase biocompatibility of Ti implants, which has the potential to reduce the healing time and increase in vivo lifetime for these implants.
机译:这项研究的目的是研究使用人类成骨细胞在阳极氧化钛上的体外细胞材料相互作用。钛是一种生物惰性材料,因此,在植入生物体内后,纤维组织会将其与周围组织隔离,从而将其封装。在这项工作中,使用不同的电解质溶液,即(1)H3PO 4,(2)HF和(3)H2SO4,(4)柠檬酸水溶液,通过阳极氧化工艺,在商业纯钛基材上生长了生物活性的无孔和纳米多孔TiO2层。氟化钠和硫酸。前三种电解质生产的生物活性TiO2膜具有无孔结构,显示出三种独特的表面形态。在20V电压下4h从第四电解液在Ti表面获得了纳米孔形态。纳米孔表面的横截面图显示出长度为600 nm的二氧化钛纳米管。发现增加阳极氧化时间最初会增加纳米管的高度,同时保持管状阵列结构,但超过4h,纳米管的生长会随着塌陷的阵列结构而降低。使用成骨前体细胞系(OPC 1)研究了人类成骨(HOB)细胞附着和生长行为3、7和11天。注意到细胞的定殖在HF阳极氧化的表面上具有明显的细胞间附着。在H2SO4电解质中生长的TiO2层在表面上没有显示出明显的细胞生长,并且还注意到了一些细胞死亡。对于H3PO 4电解质和纳米管表面进行阳极氧化的样品,在细胞之间具有良好的细胞粘附性,并在细胞之间具有细胞外基质延伸。在阳极氧化的纳米管表面上,细胞增殖极好。在纳米管表面上还发现了相邻细胞之间大量的细胞外基质(ECM),其中丝状伪足延伸从细胞中流出,以抓住纳米孔表面进行锚固。为了更好地理解和比较电池材料之间的相互作用,对阳极氧化的纳米多孔样品表面进行了不同的蚀刻。与在蚀刻的图案化表面上没有细胞相比,在纳米管表面上注意到了优先的细胞附着。在阳极氧化的表面上,分别用纽蛋白和碱性磷酸酶的细胞粘附和分化更为明显。 MTT分析显示活细胞密度增加,并且在H3PO4,HF和纳米管表面上增殖更高。当比较阳极氧化表面的细胞材料相互作用时,注意到每个表面具有不同的表面特性,从而导致细胞材料相互作用的变化。显然,粗糙的表面形态,较高的表面能和较低的接触角值是改善细胞材料相互作用的重要因素。矿化研究是在模拟体液(SBF)中进行的,离子浓度几乎等于人体血浆,以进一步了解仿生磷灰石的沉积行为。与电池-材料相互作用相似,对于使用不同电解质生长的薄膜,矿物沉积行为也有所变化。这些结果清楚地表明,H3PO4,HF电解质和纳米管中的无孔二氧化钛可以显着提高Ti植入物的生物相容性,这有可能缩短这些植入物的愈合时间并延长其体内寿命。

著录项

  • 作者

    Das, Kakoli.;

  • 作者单位

    Washington State University.;

  • 授予单位 Washington State University.;
  • 学科 Engineering Biomedical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号