首页> 外文学位 >Functional polymers and surfaces by atom transfer radical polymerization.
【24h】

Functional polymers and surfaces by atom transfer radical polymerization.

机译:功能性聚合物和表面通过原子转移自由基聚合。

获取原文
获取原文并翻译 | 示例

摘要

Atom transfer radical polymerization (ATRP) has been established as a powerful technique to prepare a variety of polymers with predetermined molecular weight, narrow molecular distribution, high functionality, and complex architecture. The objective of this thesis has been to further understand the polymerization mechanism and apply this technique to prepare well-defined functional polymeric materials such as novel block copolymers, bio-related materials, and functional surfaces. It was realized that the understanding of the kinetics and the mechanism of the ATRP is a key issue in applying it to the preparation of polymeric materials with the well-defined structures and designed properties. ATRP relies on the reversible reaction of a low-oxidation state metal complex with an alkyl halide generating radicals and the corresponding high-oxidation state metal complex. The transition metal complex is one of the main factors which determine the control of the polymerization. Ligands that complex with the transition metal play a crucial role in determining the nature of the catalyst including its structure, catalyst activity, and solubility. Therefore it is crucially important to understand the role ligand plays in the polymerization. My thesis work started with mechanistic studies aimed at further understanding the effects of the ligands and solvents on the polymerization and optimizing the reaction conditions and progressed toward the synthesis of unique polymers and functional surfaces by ATRP in solution or on the surface. This thesis is composed of three main subjects: mechanistic studies of ATRP and the synthesis of well-defined block copolymers (Chapters 1 to 3); the synthesis of bio-related polymeric materials, including polymers with biocompatible functional groups and degradable polymers (Chapters 4 to 5); the preparation of functional surfaces including antibacterial ones and thermo-responsive ones (Chapters 6 to 7).; Chapter 1 of this thesis summarized the kinetics of ATRP of n-butyl acrylate (nBA) using a Cu(I)Br/N,N,N',N",N"-pentamethyldiethylenetriamine (PMDETA) based catalyst system and methyl-2-bromopropionate (MBrP) as initiator.; Based on this understanding of the mechanism and optimized polymerization conditions, we used ATRP to prepare novel block copolymers. In chapter 2, well-defined styrene (S) and nBA linear and star-like block copolymers were synthesized via ATRP using di- and trifunctional alkyl halide initiators employing the Cu/PMDETA catalyst system. Initial addition of Cu(II) deactivator and utilization of halogen exchange techniques suppressed the coupling of radicals and improved cross-propagation to a large extent, resulting in good control over the polymerization.; In chapter 3, a well-defined poly(ethylene oxide) (PEO)-b-PS block copolymer and PS-poly(arylic acid) block brush were synthesized. Both polymers formed well-structured micelles in a shell-selective solvent (water or methanol). Subsequent UV irradiation of the micelles led to cross-linking of the PS core of the micelle. After pyrolysis, the cross-linked PS core was converted to partially graphic carbon while the shell was sacrificed, resulting in formation of discrete carbon nanoparticles and nanorods.; ATRP of dimethyl(1-ethoxycarbonyl)vinyl phosphate (DECVP) was investigated in the presence of different catalyst systems and initiators (Chapter 4). Polymers with controlled molecular weight and relatively low polydispersity (PDI 1.5) were obtained through ATRP initiated with ethyl 2-bromoisobutyrate (EBriBu) in the presence of Cu(I)Cl/2,2'-bipyridine (bpy).; In chapter 5, the investigation of degradable polymers with well-defined structure by combining radical ring-opening polymerization (RROP) and ATRP was described. The polymerization behavior of two types of cyclic monomers, 5-methylene-2-phenyl-1,3-dioxolan-4-one (MPDO) and 5,6-benzo-2-methylene-1,3-dioxepane (BMDO) have been thoroughly studied.; In chapter 6, ATRP was explored
机译:原子转移自由基聚合(ATRP)已被确立为一种强大的技术,可以制备具有预定分子量,窄分子分布,高官能度和复杂结构的多种聚合物。本文的目的是进一步了解聚合机理,并将该技术应用于制备定义明确的功能性高分子材料,例如新型嵌段共聚物,生物相关材料和功能性表面。已经认识到,对ATRP的动力学和机理的理解是将其应用于具有明确定义的结构和设计特性的聚合物材料的制备中的关键问题。 ATRP依赖于低氧化态金属配合物与卤代烷生成自由基和相应的高氧化态金属配合物的可逆反应。过渡金属络合物是决定聚合反应控制的主要因素之一。与过渡金属络合的配体在确定催化剂的性质(包括其结构,催化剂活性和溶解度)方面起着至关重要的作用。因此,了解配体在聚合反应中的作用至关重要。我的论文研究始于旨在进一步了解配体和溶剂对聚合反应的影响并优化反应条件的机理研究,并朝着通过溶液或表面上ATRP合成独特的聚合物和功能性表面的方向发展。本论文由三个主要主题组成:ATRP的机理研究和定义明确的嵌段共聚物的合成(第1章至第3章);生物相关聚合物材料的合成,包括具有生物相容性官能团的聚合物和可降解的聚合物(第4至5章);功能表面的准备,包括抗菌表面和热响应性表面(第6至7章);本文的第一章概述了使用基于Cu(I)Br / N,N,N',N“,N” -N“-五甲基二亚乙基三胺(PMDETA)的催化剂体系和甲基-2的丙烯酸正丁酯(nBA)的ATRP动力学。 -溴丙酸酯(MBrP)作为引发剂。基于对机理和最佳聚合条件的了解,我们使用ATRP制备了新型嵌段共聚物。在第2章中,使用Cu / PMDETA催化剂体系,使用二官能和三官能烷基卤化物引发剂通过ATRP合成了定义明确的苯乙烯(S)和nBA线性和星形嵌段共聚物。初始添加Cu(II)减活剂和利用卤素交换技术在很大程度上抑制了自由基的偶联并改善了交叉传播,从而很好地控制了聚合反应。在第三章中,合成了定义明确的聚环氧乙烷(PEO)-b-PS嵌段共聚物和PS-聚芳酸嵌段刷。两种聚合物在壳选择溶剂(水或甲醇)中形成结构良好的胶束。随后的胶束紫外线照射导致了胶束PS核的交联。热解后,在牺牲壳的同时,将交联的PS核转化为部分图形碳,从而形成离散的碳纳米颗粒和纳米棒。在不同的催化剂体系和引发剂存在下,对二甲基(1-乙氧基羰基)乙烯基磷酸酯(DECVP)的ATRP进行了研究(第4章)。在存在Cu(I)Cl / 2,2′-联吡啶(bpy)的情况下,通过用2-溴异丁酸乙酯(EBriBu)引发的ATRP获得具有可控制的分子量和相对较低的多分散性(PDI <1.5)的聚合物。在第5章中,描述了通过结合自由基开环聚合(RROP)和ATRP对具有明确结构的可降解聚合物的研究。两种环状单体,5-亚甲基-2-苯基-1,3-二氧戊环-4-酮(MPDO)和5,6-苯并-2-亚甲基-1,3-二氧戊环(BMDO)的聚合行为具有经过深入研究。在第6章中,探讨了ATRP

著录项

  • 作者

    Huang, Jinyu.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 266 p.
  • 总页数 266
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号