首页> 外文学位 >Phase-Field Models for Simulating Physical Vapor Deposition and Microstructure Evolution of Thin Films.
【24h】

Phase-Field Models for Simulating Physical Vapor Deposition and Microstructure Evolution of Thin Films.

机译:模拟薄膜的物理气相沉积和微观结构演变的相场模型。

获取原文
获取原文并翻译 | 示例

摘要

The focus of this research is to develop, implement, and utilize phase-field models to study microstructure evolution in thin films during physical vapor deposition (PVD). There are four main goals to this dissertation. First, a phase-field model is developed to simulate PVD of a single-phase polycrystalline material by coupling previous modeling efforts on deposition of single-phase materials and grain evolution in polycrystalline materials. Second, a phase-field model is developed to simulate PVD of a polymorphic material by coupling previous modeling efforts on PVD of a single-phase material, evolution in multiphase materials, and phase nucleation. Third, a novel free energy functional is proposed that incorporates appropriate energetics and dynamics for simultaneous modeling of PVD and grain evolution in single-phase polycrystalline materials. Finally, these phase-field models are implemented into custom simulation codes and utilized to illustrate these models' capabilities in capturing PVD thin film growth, grain and grain boundary (GB) evolution, phase evolution and nucleation, and temperature evolution. In general, these simulations show: grain coarsening through grain rotation and GB migration such that grains tend to align with the thin film surface features and GBs migrate to locations between these features so that each surface feature has a distinct grain and orientation; the incident vapor flux rate controls the density of the thin film and the formation of surface and subsurface features; the substrate phase distribution initially acts as a template for the growing microstructure until the thin film becomes sufficiently thick; latent heat released during PVD increases the surface temperature of the thin film creating a temperature gradient within the thin film influencing phase evolution and nucleation; and temperature distributions lead to regions within the thin film that allow for multiple phases to be stable and coexist. Further, this work shows the sequential approach for coupling phase-field models, described in goals (i) and (ii) is sufficient to capture first-order features of the growth process, such as the stagnation of GBs at the valleys of the surface roughness, but to capture higher-order features, such as orientation gradients within columnar grains, the single free energy functional approach developed in goal (iii) is necessary.
机译:这项研究的重点是开发,实施和利用相场模型来研究物理气相沉积(PVD)过程中薄膜的微观结构演变。本论文有四个主要目标。首先,通过结合先前关于单相材料沉积和多晶材料中晶粒演化的建模工作,开发了一个相场模型来模拟单相多晶材料的PVD。其次,通过将先前对单相材料的PVD建模,多相材料的演化和相核化的建模工作结合起来,开发了一个相场模型来模拟多晶材料的PVD。第三,提出了一种新颖的自由能功能,该功能结合了适当的能量学和动力学,用于同时建模单相多晶材料中的PVD和晶粒演化。最后,将这些相场模型实施到自定义仿真代码中,并用于说明这些模型在捕获PVD薄膜生长,晶粒和晶界(GB)演化,相演化和成核以及温度演化方面的能力。通常,这些模拟表明:通过晶粒旋转和GB迁移使晶粒粗化,从而使晶粒趋于与薄膜表面特征对齐,而GBs迁移到这些特征之间的位置,从而每个表面特征具有不同的晶粒和方向;入射蒸气通量率控制着薄膜的密度以及表面和亚表面特征的形成;在薄膜变得足够厚之前,衬底相分布最初充当生长微结构的模板。 PVD释放的潜热会增加薄膜的表面温度,从而在薄膜内产生温度梯度,从而影响相的发展和成核;温度分布导致薄膜内的区域允许多个相稳定并共存。此外,这项工作表明目标(i)和(ii)中描述的耦合相场模型的顺序方法足以捕获生长过程的一阶特征,例如表面谷处的GB停滞。粗糙度,但要捕获高阶特征,例如圆柱状晶粒内的取向梯度,目标(iii)中开发的单一自由能功能方法是必要的。

著录项

  • 作者

    Stewart, James A., Jr.;

  • 作者单位

    University of Arkansas.;

  • 授予单位 University of Arkansas.;
  • 学科 Materials science.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号