首页> 外文学位 >Adsorption of microorganisms on single-walled carbon nanotubes and other porous media.
【24h】

Adsorption of microorganisms on single-walled carbon nanotubes and other porous media.

机译:微生物在单壁碳纳米管和其他多孔介质上的吸附。

获取原文
获取原文并翻译 | 示例

摘要

Waterborne outbreaks resulting from contamination of drinking water systems with biothreat pathogens are a cause of major public health concern in many countries today. State of the art technologies, which are primarily designed to treat sewage based contaminations, are not very effective against biothreat agents. Most of the biothreat agents are colorless, tasteless and odorless and are likely to be undetected by existing sensory systems. These two drawbacks (ineffectiveness in treatment and inability to detect) have made the water treatment plants highly vulnerable for bioterrorism attacks. Carbon nanotube technology has a great potential to make important advancement in water security and protection from biothreat agents. Carbon nanotubes can be used as adsorbent media for effective removal of multiple pathogens from contaminated water, they can also be used as potential biosensors for simultaneous concentration and detection of multiple pathogens in water.; In this research the results of batch adsorption studies of three different microorganisms on single-walled carbon nanotubes, activated carbon and NanoCeram(TM) are presented and the feasibility of using carbon nanotubes for removal of microorganisms are reported. Batch adsorption experiments are conducted to determine adsorption kinetics and adsorption equilibrium of pure cultures of Bacillus subtilis (B.subtilis), Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus) on SWCNT aggregates. Adsorption of mixed cultures of E.coli and S.aureus on single-walled carbon nanotube aggregates is also tested. The diffusivities of the pure cultures of bacteria in single walled carbon nanotubes obtained are 1.26*10-10 cm2/s for B.subtilis, 1.09*10-10 cm2/s for E.coli, and 1.64*10-9 cm2/s for S.aureus. The Henry's constant for B.subtilis adsorption on SWCNT is 788,550. This is significantly higher than those obtained for activated carbon 28,631, and NanoCeram(TM) 20,853.; Henry's constants obtained for E.coli and S.aureus are 1.0*106 and 1.10*108 respectively. High Henry's constant of adsorption means high adsorption affinity. Diffusivities of both the bacterial species in single-walled carbon nanotubes are also calculated. It was found that smaller size S. aureus, the smallest microorganism of the three, on the average diffuses 13 times faster than B.subtilis and 15 times faster than E.coli and has a 5-10 times faster diffusion rate than E. coli. In addition, S.aureus about 100 times higher adsorption affinity for SWCNT than the other two. The combined high adsorption affinity and fast adsorption kinetics for S.aureus suggest that even unmodified single-wall carbon nanotubes can selectively differentiate S. aureus from B. subtilis and E. coli in water.; In addition to the adsorption studies, extensive electron microscopy and confocal microscopy analysis is performed with bacterial samples adsorbed on carbon nanotubes. The microscopic analysis qualitatively confirmed the adsorption results and provides direct visualization of the adsorbed bacteria on carbon nanotube aggregates. Both E.coli and S.aureus form biofilms on carbon nanotube aggregates and have a strong tendency to connect with each other rather than with the carbon surface.
机译:饮用水系统受到生物威胁病原体污染导致的水源性暴发是当今许多国家引起重大公共卫生问题的原因。主要设计用于处理基于污水的污染物的最先进技术对生物威胁剂的效果不是很好。大多数生物威胁剂是无色,无味和无味的,并且很可能不会被现有的传感系统检测到。这两个缺点(治疗无效和无法检测)使水处理厂极易遭受生物恐怖袭击。碳纳米管技术具有巨大的潜力,可以在水安全性和防止生物威胁剂方面取得重要进展。碳纳米管可以用作吸附介质,以有效地从受污染的水中去除多种病原体,也可以用作潜在的生物传感器,用于同时浓缩和检测水中的多种病原体。在这项研究中,提出了三种不同微生物在单壁碳纳米管,活性炭和NanoCeram(TM)上的批量吸附研究结果,并报道了使用碳纳米管去除微生物的可行性。进行分批吸附实验以确定枯草芽孢杆菌(B.subtilis),大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)的纯培养物在SWCNT聚集体上的吸附动力学和吸附平衡。还测试了大肠杆菌和金黄色葡萄球菌的混合培养物在单壁碳纳米管聚集体上的吸附。所获得的单壁碳纳米管中细菌纯培养物的扩散度对于枯草芽孢杆菌为1.26 * 10-10 cm2 / s,对于大肠杆菌为1.09 * 10-10 cm2 / s,而对于1.64 * 10-9 cm2 / s对于金黄色葡萄球菌。枯草芽孢杆菌在SWCNT上的吸附亨利常数为788,550。这显着高于活性炭28,631和NanoCeram TM 20,853获得的那些。大肠杆菌和金黄色葡萄球菌的亨利常数分别为1.0 * 106和1.10 * 108。高的亨利吸附常数意味着高的吸附亲和力。还计算了单壁碳纳米管中两种细菌的​​扩散率。发现较小的金黄色葡萄球菌是三种细菌中最小的微生物,平均扩散速度比枯草芽孢杆菌快13倍,比大肠杆菌快15倍,扩散速度比大肠杆菌快5-10倍。另外,金黄色葡萄球菌对SWCNT的吸附亲和力比其他两种高约100倍。对金黄色葡萄球菌的高吸附亲和力和快速吸附动力学的结合表明,即使未经修饰的单壁碳纳米管也可以选择性地将金黄色葡萄球菌与水中的枯草芽孢杆菌和大肠杆菌区分开。除吸附研究外,还对吸附在碳纳米管上的细菌样品进行了广泛的电子显微镜和共聚焦显微镜分析。微观分析定性地证实了吸附结果,并提供了碳纳米管聚集体上吸附细菌的直接可视化。大肠杆菌和金黄色葡萄球菌均在碳纳米管聚集体上形成生物膜,并具有相互连接而不是与碳表面连接的强烈趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号