首页> 外文学位 >Survey of gas-liquid mass transfer in bioreactors.
【24h】

Survey of gas-liquid mass transfer in bioreactors.

机译:生物反应器中气液传质的研究。

获取原文
获取原文并翻译 | 示例

摘要

Bioreactors are becoming more important in the production of biobased products such as proteins, medicines, and renewable fuels. The economic viability of these processes is dependent on the bioreactor's ability to aid the microorganism and provide a friendly environment. One of the important microorganism requirements is proper gas concentrations so that the microorganism has the necessary inputs for proper metabolism. These gas concentrations are obtained and maintained through optimized gas-liquid mass transfer and mixing, also known as hydrodynamics. Other bioreactor responsibilities include damage mitigation and bioreactor volume utilization. A proper bioreactor design should also maximize profitability through ease of use, maintenance, and construction.;This thesis work provides a survey of gas-liquid mass transfer theories, applications, and dependencies in major bioreactor and several novel designs. The major reactor designs include the stirred tank bioreactor, bubble column, airlift bioreactor, and fixed bed bioreactor. Variations of these major designs are also considered such as the slurry bubble column, internal- and external-loop airlift, draught-tube bioreactor, and trickle, packed, and flooded bed bioreactor.;Since the microorganisms used in biological processes are diverse, a best or preferred bioreactor design is not feasible. Rather, bioreactor options can be presented based on the microorganism properties and production scale. Stirred tank bioreactors generally produce the largest gas-liquid mass transfer rates, but they also tend to cause high shear rates and variations, which can be very harmful to microorganisms. The impeller often limits the operating range, scale, process time, especially with non-Newtonian liquids. The bubble column and internal-loop airlift bioreactor have similar gas-liquid mass transfer rates; however, the bubble column has significant backmixing while the airlift bioreactor has lower bioreactor volume utilization. The external-loop airlift bioreactor provides more process and mixing control and generally has lower shear rates, but the attainable gas-liquid mass transfer rate and volume utilization tend to be lower. The fixed bed bioreactors protect and support microorganisms very well. On the other hand, the phase flow rates are much lower than in the other bioreactor designs. In other words, each bioreactor design has important advantages and disadvantages, and the microorganism may very well determine the optimal design.;The bioreactor designs may be described as complementary rather than competitive. Each design and design variation has been implemented to fill a void caused by the original form. This design mentality has led to highly complex bioreactor relationships and the inability to identify the single best bioreactor because that was not the intent. Future research and development can be taken into two different directions. First, a design variation could be approached with the clear intent of superiority for biological processes. Such a device could possible use a mixture of airlift and stirred tank bioreactor attributes. Second, research could be oriented towards the continued niche creation. Each design improvement would be implemented with the intent of improving a certain bioreactor attribute or application with a specific type of microorganism. For example, the fixed bed bioreactor research could investigate new packing that would provide better support and shear protection for very sensitive microorganisms such mammalian cells.
机译:生物反应器在生产蛋白质,药物和可再生燃料等生物基产品中变得越来越重要。这些方法的经济可行性取决于生物反应器辅助微生物并提供友好环境的能力。微生物的重要要求之一是适当的气体浓度,以使微生物具有适当代谢所需的输入。这些气体浓度是通过优化的气液传质和混合(也称为流体动力学)获得并保持的。其他生物反应器职责包括减轻损害和生物反应器体积利用。适当的生物反应器设计还应通过易于使用,维护和构造来最大程度地提高收益。本论文研究了气液传质理论,应用以及主要生物反应器和几种新颖设计的依赖性。主要的反应器设计包括搅拌釜生物反应器,鼓泡塔,空运生物反应器和固定床生物反应器。还考虑了这些主要设计的变化形式,例如浆液鼓泡塔,内循环和外循环气举,吸管式生物反应器以及滴流式,填充式和溢流床式生物反应器。由于生物过程中使用的微生物多种多样,最佳或首选的生物反应器设计不可行。相反,可以基于微生物的性质和生产规模来提供生物反应器选择。搅拌釜生物反应器通常产生最大的气液传质速率,但它们也往往会导致高剪切速率和变化,这可能对微生物非常有害。叶轮通常会限制操作范围,规模,处理时间,特别是对于非牛顿液体。鼓泡塔和内环气提生物反应器具有相似的气液传质速率。但是,鼓泡塔具有明显的返混,而气提式生物反应器的生物利用度较低。外环空运生物反应器提供了更多的工艺和混合控制,并且通常具有较低的剪切速率,但是可获得的气液传质速率和体积利用率趋于降低。固定床生物反应器可以很好地保护和支持微生物。另一方面,相流速比其他生物反应器设计低得多。换句话说,每种生物反应器设计都有重要的优缺点,微生物可以很好地确定最佳设计。生物反应器设计可以描述为互补而不是竞争。每个设计和设计变体均已实现,以填补由原始表单引起的空白。这种设计思路导致了高度复杂的生物反应器之间的关系,并且无法确定单个最佳生物反应器,因为这并非意图。未来的研究和开发可以分为两个不同的方向。首先,可以明显地对生物过程具有优越性来进行设计变更。这样的设备可能使用空运和搅拌槽生物反应器属性的混合物。第二,研究可以针对不断发展的利基市场。为了改善某些生物反应器属性或对特定类型的微生物的应用,将实施每种设计改进。例如,固定床生物反应器研究可以研究新的填料,该填料将为非常敏感的微生物(例如哺乳动物细胞)提供更好的支撑和剪切保护。

著录项

  • 作者

    Kadic, Enes.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2010
  • 页码 319 p.
  • 总页数 319
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号