首页> 外文学位 >Thermal transport on the nanometer scale and the effect of microstructure and interface resistance.
【24h】

Thermal transport on the nanometer scale and the effect of microstructure and interface resistance.

机译:纳米尺度的热传递以及微观结构和界面电阻的影响。

获取原文
获取原文并翻译 | 示例

摘要

The aim of this research is to provide a better understanding of the physics of phonons involved in thermal transport on nanometer scale and to address the need for systematic information about the thermal properties of ultra-thin films. The present work includes data on thermal transport in dense and porous hydrogen silsesquioxane thin films and thin SiO2 films, across TiN/MgO(001), TiN/MgO(111) and TiN/Al2O3(0001), and in W/Al2O3, Re/Al2O3 and W/B multilayers. The thermal conductivities of low-k dielectric thin films were measured with the 3o method between 80 and 400 K. The strong temperature dependence is not reflected by the minimum thermal conductivity model for homogeneous materials. The differential effective medium model predicts a 1.5 power scaling of thermal conductivity with atomic density, in good agreement with experimental data. The thermal conductances G of TiN/MgO(001), TiN/MgO(111) and TiN/Al2O3(0001), interfaces, measured at temperatures between 79.4 and 294 K using time-domain thermoreflectance, are essentially identical and in good agreement with the predictions of lattice dynamics models and the diffuse mismatch model. Near room temperature G ≈ 700 MW m-2 K-1, ≈5 times larger than the highest values reported previously for any individual interface. For W/Al2O3, multilayers deposited by atomic layer deposition with layers only a few nanometers thick, the high interface density produced a strong impediment to heat transfer, giving a thermal conductivity of ∼0.6 W m-1 K-1. The thermal conductivities of magnetron sputtered multilayers of W/Al2O3, Re/Al 2O3 and W/B decrease with increasing number of layers and the dependence on temperature is similar to that predicted by the diffuse mismatch model. The conductivities of W/Al2O3, and Re/Al 2O3 multilayers were found to be similar, and as low as ∼0.6 W m-1 K-1---suitable for ultra-low conductivity thermal barriers.
机译:这项研究的目的是提供对纳米级热传输中所涉及的声子物理的更好理解,并满足对有关超薄膜热性能的系统信息的需求。目前的工作包括有关在密集和多孔氢倍半硅氧烷薄膜和SiO2薄膜中跨TiN / MgO(001),TiN / MgO(111)和TiN / Al2O3(0001)以及W / Al2O3,Re中的热传输数据/ Al2O3和W / B多层。低k介电薄膜的热导率是通过3o方法在80至400 K之间测量的。强烈的温度依赖性没有被均质材料的最小热导率模型所反映。差分有效介质模型预测了具有原子密度的热导率的1.5功率缩放,与实验数据非常吻合。 TiN / MgO(001),TiN / MgO(111)和TiN / Al2O3(0001)的热导率G基本上是相同的,并且与时域热反射率在79.4至294 K之间进行了测量晶格动力学模型和扩散失配模型的预测。接近室温G≈ 700 MW m-2 K-1,比以前针对任何单个接口报告的最高值大5倍。对于W / Al2O3来说,通过原子层沉积法沉积的多层只有几纳米厚,高的界面密度对传热产生了很大的阻碍,导热系数约为0.6 W m-1 K-1。 W / Al2O3,Re / Al 2O3和W / B磁控溅射多层的热导率随层数的增加而降低,并且对温度的依赖性与扩散失配模型所预测的相似。发现W / Al2O3和Re / Al 2O3多层的电导率相似,并且低至〜0.6 W m-1 K-1--适用于超低电导率热障。

著录项

  • 作者

    Costescu, Ruxandra M.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 94 p.
  • 总页数 94
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号