首页> 外文学位 >Insights into the catalytic mechanism of a retaining xylanase from Cellulomonas fimi.
【24h】

Insights into the catalytic mechanism of a retaining xylanase from Cellulomonas fimi.

机译:洞悉纤维单胞菌保留木聚糖酶的催化机理。

获取原文
获取原文并翻译 | 示例

摘要

The family 10 xylanase from Cellulomonas fimi (Cex) is an important model enzyme on which numerous mechanistic studies have been performed. This enzyme catalyzes the hydrolysis of beta-glycosidic linkages via a double-displacement mechanism involving the formation and subsequent breakdown of a covalent glycosyl-enzyme intermediate with net retention of stereochemistry at the centre undergoing substitution. The finer details of the mechanism of this enzyme were investigated in three studies in order to gain a better understanding of this family of enzymes.;In the first study presented in Chapter 2, the roles of key active-site residues in the catalytic mechanism of Cex were investigated by utilizing site-directed mutagenesis in combination with steady state kinetic analyses and pH-rate dependencies. The rate-determining step for the aryl substrates tested remains deglycosylation for many of the enzymes, while the altered pH profiles demonstrate a role for these highly conserved residues in the hydrogen-bond network responsible for maintaining the ionization state of the two catalytic residues.;In Chapter 3, a second study addresses a fundamental enquiry of mechanistic enzymology; that is, how distal and proximal substrate interactions influence catalysis. By systematically removing hydrogen-bonding interactions through modification, individually, of substrate and enzyme, deep insight is gained into the effects of these modifications on each step of the hydrolysis reaction catalyzed by Cex and a family 11 xylanase (Bcx). The data obtained provide significant insight into the contributions of hydrogen-bonding interactions at the distal and proximal sites. The strongest bond energies were measured in the proximal site, suggesting that these interactions are critical for substrate binding and bond hydrolysis. A particularly important finding of this study is that both 'uniform' and 'differential' binding interactions are recruited in the active site of a single enzyme.;The third study, presented in Chapter 4, examines how well a series of five high affinity inhibitors mimic the transition state of Cex as a function of the sp2- or sp3-hybridization state of the "anomeric carbon". Kinetic parameters for o-nitrophenyl beta-xylobioside were determined, and very good correlations were observed in logarithmic plots relating the Ki value for the sp2-hybridized class of inhibitor with 10 mutants and kcat/Km for the hydrolysis of the substrate by the corresponding mutants. The dependence was significantly less in the plot of log(kcat/ Km) versus log(1/Ki) for the sp3-hybridized class of inhibitor, indicating that the sp 2-hybridized class of inhibitors more closely mimics the geometry of the transition state than does the sp3-hybridized class of inhibitors.
机译:来自纤维素纤维单胞菌(Cululomonas fimi,Cex)的10木聚糖酶家族是一种重要的模型酶,已对其进行了许多机理研究。该酶通过双置换机制催化β-糖苷键的水解,该机制涉及共价糖基酶中间体的形成和随后的分解,并在发生取代的中心保留了立体化学。为了更好地理解该酶家族,在三项研究中对该酶的机理进行了详细的研究。在第二章介绍的第一项研究中,关键的活性位点残基在三氯甲烷催化机理中的作用。通过利用定点诱变结合稳态动力学分析和pH速率依赖性研究了Cex。所测试的芳基底物的决定速率的步骤对于许多酶而言仍然是去糖基化,而改变后的pH值证明了氢键网络中这些高度保守的残基的作用,负责维持两个催化残基的电离状态。在第三章中,第二项研究探讨了机械酶学的基本研究。也就是说,远端和近端底物的相互作用如何影响催化作用。通过分别修饰底物和酶来系统地除去氢键相互作用,可以深入了解这些修饰对Cex和11族木聚糖酶(Bcx)催化的水解反应每个步骤的影响。所获得的数据为远端和近端氢键相互作用的贡献提供了重要的见识。在近端部位测量到最强的键能,表明这些相互作用对于底物键合和键水解至关重要。这项研究的一个特别重要的发现是,“统一”和“差异”结合相互作用都在单个酶的活性位点募集。第三章,第4章介绍,研究了一系列五种高亲和力抑制剂的效果如何。根据“异头碳”的sp2-或sp3-杂化状态模拟Cex的过渡态。确定了邻硝基苯基β-木糖苷的动力学参数,并在对数图中观察到了很好的相关性,其中sp2-杂化的抑制剂具有10个突变体,Ki值与相应突变体水解底物的kcat / Km相关。对于sp3杂化类型的抑制剂,log(kcat / Km)相对于log(1 / Ki)的依赖性显着降低,这表明sp 2-杂化类型的抑制剂更紧密地模拟了过渡态的几何形状比sp3杂化的抑制剂种类要多。

著录项

  • 作者

    Wicki, Jacqueline.;

  • 作者单位

    The University of British Columbia (Canada).;

  • 授予单位 The University of British Columbia (Canada).;
  • 学科 Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 333 p.
  • 总页数 333
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 有机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号