首页> 外文学位 >Unsteady Fluid-structure Interactions in Soft-walled Microchannels
【24h】

Unsteady Fluid-structure Interactions in Soft-walled Microchannels

机译:软壁微通道中的非稳态流固耦合

获取原文
获取原文并翻译 | 示例

摘要

A one-dimensional model is developed for the transient (unsteady) fluid--structure interaction (FSI) between a soft-walled microchannel and viscous fluid flow within it. An Euler--Bernoulli beam bending equation, which accounts for both transverse bending rigidity and nonlinear axial tension, is coupled to a one-dimensional fluid model obtained by depth-averaging (across the channel height) the two-dimensional incompressible Navier--Stokes equations. A novel feature of the proposed model is that the Navier--Stokes equations are scaled in the viscous (lubrication) limit relevant to microfluidics. The resulting set of coupled nonlinear partial differential equations are solved numerically through a segregated approach employing fully-implicit time stepping and second-order finite-differences for discretization of the various differential operators. Internal FSI iterations and under-relaxation are employed to handle the stiff nonlinear algebraic problems within each time step. Next, the Strouhal number (ratio of the solid to fluid characteristic time scales) is fixed at unity, while the Reynolds number Re (ratio of inertial to viscous fluid forces) and a non-dimensional Young's modulus Sigma are varied independently to explore the unsteady FSI behaviors in this parameter space. Based on the magnitude of the channel wall's deformation, a critical Reynolds number is calculated for (a) pure bending and (b) both bending and tension, by determining when the maximum steady state deformation exceeds a certain threshold. This critical Reynolds number is shown to scale with Sigma, specifically following the scaling of Re ∝ Sigma3/4. This scaling indicates that "wall modes" play a role in the evolution of the system away from a flat-wall state, eventually leading to unsteady (transient) FSIs. Due to nonlinearity in the wall tension, an intermediate metastable state is found at "moderate" Reynolds numbers, which resembles a "buckling mode" of a beam, before the wall "snaps" into a final steady state. The maximum wall displacement at steady state is shown to correlate well with a single dimensionless group, namely Re/Sigma0.9. The details of the collapse onto a single trend line depend on whether we consider (a) pure bending or (b) both bending and tension, nevertheless a clean collapse occurs for both. A discussion is given, on the basis of the numerical approach to the proposed one-dimensional unsteady FSI model, regarding the numerical difficulties in simulating stiff problems in a segregated approach. Finally, elaborating upon the last point, a critical discussion of current computational approaches in OpenFOAM for three-dimensional unsteady microfluidic FSIs is provided.
机译:针对软壁微通道和其中的粘性流体流动之间的瞬态(非稳态)流体-结构相互作用(FSI),开发了一个一维模型。考虑了横向弯曲刚度和非线性轴向张力的Euler-Bernoulli梁弯曲方程与通过对二维不可压缩Navier-Stokes进行深度平均(在整个通道高度上)而获得的一维流体模型耦合方程。提出的模型的一个新颖特征是,Navier-Stokes方程在与微流体相关的粘性(润滑)极限范围内缩放。通过使用完全隐式时间步长和二阶有限差分的离散方法对各种差分算子进行离散化,通过隔离方法对所得的耦合非线性偏微分方程组进行了数值求解。内部FSI迭代和欠松弛可用于处理每个时间步长内的刚性非线性代数问题。接下来,将Strouhal数(固体与流体特征时间比例之比)固定为1,而雷诺数Re(惯性与粘滞流体力之比)和无量纲杨氏模量Sigma分别进行变化以探究不稳定此参数空间中的FSI行为。根据通道壁变形的大小,通过确定最大稳态变形何时超过某个阈值,可以计算出(a)纯弯曲和(b)弯曲与张力的临界雷诺数。该临界雷诺数显示为与Sigma成比例,特别是在Re ∝ Sigma3 / 4缩放之后。这种缩放比例表明“壁模式”在系统从平坦壁状态的演变中起作用,最终导致不稳定(瞬态)的FSI。由于壁张力的非线性,在壁“弯曲”为最终稳态之前,发现处于“中等”雷诺数的中间亚稳态,类似于梁的“屈曲模式”。示出了稳态下的最大壁位移与单个无量纲组,即Re / Sigma0.9,具有良好的相关性。崩溃到单个趋势线上的细节取决于我们是考虑(a)纯弯曲还是(b)弯曲和张力,尽管如此,这两种情况都会发生干净的崩溃。在对拟议的一维非稳态FSI模型进行数值计算的基础上,进行了讨论,涉及在分离方法中模拟刚性问题的数值难度。最后,详细阐述了最后一点,提供了对OpenFOAM中用于三维非稳态微流体FSI的当前计算方法的严格讨论。

著录项

  • 作者

    Inamdar, Tanmay C.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Fluid mechanics.
  • 学位 M.S.M.E.
  • 年度 2018
  • 页码 90 p.
  • 总页数 90
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号