首页> 外文学位 >Thermoelastic properties of iron- and aluminum-bearing bridgmanite at high pressures and temperatures.
【24h】

Thermoelastic properties of iron- and aluminum-bearing bridgmanite at high pressures and temperatures.

机译:含铁和铝的水辉石在高压和高温下的热弹性。

获取原文
获取原文并翻译 | 示例

摘要

Thermoelastic properties of the Earth's forming minerals play an important role in deciphering the tomographic images of seismic observations. In spite of the considerable progress in the experimental measurements of the elastic properties of minerals at high pressures and temperatures, the available data is still quite limited to constrain the composition and thermal structure of the Earth's interior. The first-principles atomistic calculations have often complimented the experimental measurements in the study of minerals under high pressure and temperature conditions. In this work, we present the first-principles investigation of the effect of iron (Fe) and aluminum (Al) on the thermoelastic properties of MgSiO3 perovksite (also known as bridgmanite), the most abundant mineral of the Earth's lower mantle. First, we investigate the pressure induced iron state changes in Fe-bearing MgSiO3 and MgGeO3 perovskite (a low-pressure analog of MgSiO3 ) within the local density (LDA+U) and the generalized gradient approximation augmented by the Hubbard-type correction (GGA+U). We showed that the iron state transitions occur at particular average Fe-O bond-length irrespective of mineral composition (MgSiO3 or MgGeO3 ) or the exchange and correlation functional used in the calculations (LDA+U or GGA+U). We further study the effect of disorder, iron concentration, and temperature on the spin crossover in Fe3+ -bearing bridgmanite using LDA+U calculations. Thermal effects have been addressed within the quasiharmonic approximation using density functional perturbation theory (DFPT). Then, we calculate the aggregate elastic moduli (bulk and shear modulus) and acoustic velocities for the Fe- and Al-bearing bridgmanite to investigate the effect of iron state changes and its possible consequences to the lower mantle composition.
机译:地球形成矿物的热弹性特性在破译地震观测的断层图像方面起着重要作用。尽管在高压和高温下矿物弹性性能的实验测量方面取得了很大进展,但可用数据仍然非常有限,无法限制地球内部的组成和热结构。第一性原理原子计算通常是对高压和高温条件下矿物研究中的实验测量的补充。在这项工作中,我们给出了铁(Fe)和铝(Al)对MgSiO3钙钛矿(也称为桥锰铁矿)(地球下地幔中含量最丰富的矿物)的热弹性特性的影响的第一性原理研究。首先,我们研究了局部密度(LDA + U)中含铁的MgSiO3和MgGeO3钙钛矿(MgSiO3的低压类似物)的压力诱导铁态变化,以及由Hubbard型校正(GGA)增强的广义梯度近似+ U)。我们表明,铁态转变发生在特定的平均Fe-O键长上,而与矿物成分(MgSiO3或MgGeO3)或计算中使用的交换和相关函数(LDA + U或GGA + U)无关。我们使用LDA + U计算方法,进一步研究了无序,铁浓度和温度对Fe3 +-辉钼矿中自旋交叉的影响。使用密度泛函摄动理论(DFPT)在准谐波近似中解决了热效应。然后,我们计算了含铁和含铝水辉石的总弹性模量(体积和剪切模量)和声速,以研究铁态变化的影响及其对下地幔成分的可能影响。

著录项

  • 作者

    Shukla, Gaurav.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Geophysics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号