首页> 外文学位 >Optical Transmission Properties of Dielectric Aperture Arrays.
【24h】

Optical Transmission Properties of Dielectric Aperture Arrays.

机译:介电孔径阵列的光传输特性。

获取原文
获取原文并翻译 | 示例

摘要

Optical detection devices such as optical biosensors and optical spectrometers are widely used in many applications for the functions of measurements, inspections and analysis. Due to the large dimension of prisms and gratings, the traditional optical devices normally occupy a large space with complicated components. Since cheaper and smaller optical devices are always in demand, miniaturization has been kept going for years. Thanks to recent fabrication advances, nanophotonic devices such as semiconductor laser chips have been growing in number and diversity. However, the optical biosensor chips and the optical spectrometer chips are seldom reported in the literature. For the reason of improving system integration, the study of ultra-compact, low-cost, high-performance and easy-alignment optical biosensors and optical spectrometers are imperative. This thesis is an endeavor in these two subjects and will present our research work on studying the optical transmission properties of dielectric aperture arrays and developing new optical biosensors and optical spectrometers.;The first half of the thesis demonstrates that the optical phase shift associated with the surface plasmon (SP) assisted extraordinary optical transmission (EOT) in nano-hole arrays fabricated in a metal film has a strong dependence on the material refractive index value in close proximity to the holes. A novel refractive index sensor based on detecting the EOT phase shift is proposed by building a model. This device readily provides a 2-D biosensor array platform for non-labeled real-time detection of a variety of organic and biological molecules in a sensor chip format, which leads to a high packing density, minimal analyte volumes, and a large number of parallel channels while facilitating high resolution imaging and supporting a large space-bandwidth product (SBP). Simulation (FDTD Solutions, Lumerical Solutions Inc) results indicate an achievable sensitivity limit of 4.37x10-9 refractive index units (RIU) and a dynamic range as large as 0.17 RIU.;Subsequently, optical transmission properties through a self-mixing interferometer array are studied and a novel high-resolution cost-effective optical spectrometer is proposed. The miniature interferometer-based spectrometer is made of polymethyl methacrylate (PMMA) with a CCD as the detector. The detected intensity of each CCD pixels contains the spectral information. Since each frequency component in the incoming beam corresponds to a unique phase difference of the two beam portions of each optical interferometer, the total intensity received by each CCD pixel, which is resulted from the addition of the interference signals from all the frequency components in the beam, should also be unique. Therefore, the spectrum calculation is a problem to solve an ill-posed linear system by using Tikhonov regularization method. Simulation results show that the resolution can reach picometer level. Apart from the choice of path difference between the interfering beams, the spectral resolution also depends on the signal-to-noise ratio and analogue-digital conversion resolution (dynamic range) of the CCD chip. In addition, the theory of uniform waveguide scattering is explored to expand the possibility of using such mini-interferometers for performing free-space spectral analysis of waveguide devices. At the same time, the method of least squares is used to correct the pixel non-uniformity of the CCD so as to improve the performance of the spectrometer.;The sensor chip and spectrometer chip introduced here are based on the interference of light transmitted through dielectric aperture arrays. Their compact feature renders these devices ideal for miniaturization and integration as the systems in microfluidics architectures and lab-on-chip designs.
机译:诸如光学生物传感器和光谱仪之类的光学检测设备被广泛用于许多应用中,以实现测量,检查和分析的功能。由于棱镜和光栅的尺寸较大,传统的光学设备通常会占用较大的空间,且部件复杂。由于总是需要更便宜和更小尺寸的光学设备,因此小型化已经持续了多年。由于最近的制造进步,诸如半导体激光芯片的纳米光子器件的数量和多样性都在增长。但是,在文献中很少报道光学生物传感器芯片和光谱仪芯片。为了提高系统集成度,必须对超紧凑,低成本,高性能和易对准的光学生物传感器和光谱仪进行研究。本论文是这两个方面的工作,将介绍我们在研究介电孔径阵列的光学传输特性以及开发新型光学生物传感器和光谱仪方面的研究工作。论文的上半部分说明了与光子相移有关的光学相移。在金属膜中制造的纳米孔阵列中的表面等离激元(SP)辅助超常光传输(EOT)对紧密靠近孔的材料折射率值有很强的依赖性。通过建立模型,提出了一种基于检测EOT相移的新型折射率传感器。该设备可轻松提供二维生物传感器阵列平台,以非标记实时检测传感器芯片形式的各种有机分子和生物分子,从而导致高包装密度,最小的分析物体积以及大量的并行通道,同时促进高分辨率成像并支持大空间带宽乘积(SBP)。仿真结果(FDTD Solutions,Lumerical Solutions Inc)的结果表明,可以实现的灵敏度极限为4.37x10-9折射率单位(RIU),动态范围高达0.17 RIU;随后,通过自混合干涉仪阵列获得的光传输特性为进行了研究,并提出了一种新型的高性价比的光学光谱仪。基于微型干涉仪的光谱仪由聚甲基丙烯酸甲酯(PMMA)和CCD作为检测器制成。每个CCD像素的检测强度包含光谱信息。由于入射光束中的每个频率分量都与每个光学干涉仪的两个光束部分的唯一相位差相对应,因此每个CCD像素接收到的总强度是由于将来自所有干涉分量的干涉信号相加而得到的。光束,也应该是唯一的。因此,频谱计算是使用Tikhonov正则化方法解决不适定线性系统的问题。仿真结果表明,该分辨率可以达到皮米级。除了选择干涉光束之间的路径差之外,光谱分辨率还取决于CCD芯片的信噪比和模数转换分辨率(动态范围)。另外,探索均匀波导散射的理论以扩大使用这种微型干涉仪进行波导装置的自由空间光谱分析的可能性。同时,采用最小二乘法来校正CCD像素的不均匀性,从而提高了光谱仪的性能。此处介绍的传感器芯片和光谱仪芯片是基于透射光的干涉。介电孔阵列。它们的紧凑特性使其成为微流控架构和芯片实验室设计中的系统的理想选择,从而使其小型化和集成化。

著录项

  • 作者

    Yang, Tao.;

  • 作者单位

    The Chinese University of Hong Kong (Hong Kong).;

  • 授予单位 The Chinese University of Hong Kong (Hong Kong).;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号