首页> 外文学位 >The biomechanical basis of DNA breakage in chronic myelogenous leukemia.
【24h】

The biomechanical basis of DNA breakage in chronic myelogenous leukemia.

机译:慢性粒细胞性白血病中DNA断裂的生物力学基础。

获取原文
获取原文并翻译 | 示例

摘要

Chronic myelogenous leukemia, a cancer of white blood cells, is characterized by a chromosome translocation between ABL and BCR due to their close proximity during BCR replication. Twenty seven DNA breakpoints are within a major breakpoint cluster region (M-BCR), but why these breakpoints are clustered remains unclear. Initially, a Monte-Carlo algorithm calculating the sequence-dependent bending energy was used to position nucleosomes simultaneously in M- BCR. MNase digestion followed by adapter-mediated PCR was then used to map experimentally the nucleosome boundaries. The discrepancy prompted the development of a replication-directed (RD) algorithm predicting nucleosome positions from the replication origin, one after another, each at the local minimum of bending energy. The better agreement confirms the spatial and temporal importance in nucleosome assembly in vivo. Therefore, a stepwise model for coupled nucleosome disassembly/reassembly across a replication fork was proposed: Unwinding of DNA by helicases may generate positive superhelical tension to facilitate the disassembly of downstream nucleosomes, which in turn may facilitate the reassembly of upstream nucleosomes. The latter may include a DNA loop formation followed by a sequential closing of two DNA arms around each histone core. Chromatin conformation capturing PCR, involving cross-linking, AluI digestion, re-ligation and PCR, preserved the core DNA conformation in 3-D and confirmed a 292-bp nucleosome-excluded region (A-rich region) containing a stretch of 17 consecutive A (17-A). Nineteen breakpoints are upstream from this region: 6 are clustered immediately upstream to the 17-A, and 10 out of 13 further upstream ones are spread in 4 nucleosome cores. It is likely that (1) the long A-rich region may extrude from the chromatin fiber or form an empty loop or other unusual secondary structures, which may experience greater mechanical stress locally without the "protection" of a histone core; (2) DNA in the newly reassembled nucleosome cores upstream to the A-rich region may lose histone cores under mechanical stress or in a stalled replication. These mechanisms may account for most of the M- BCR breakpoints and at least two other diseases caused by chromosome translocation, suggesting a functional role for the histone core as a "uniform curvature controller" to minimize the DNA breakage.
机译:慢性粒细胞性白血病是白细胞癌,其特征在于ABL和BCR之间的染色体易位,因为它们在BCR复制过程中非常接近。在主要的断点簇区域(M-BCR)内有27个DNA断点,但是尚不清楚为什么将这些断点成簇。最初,使用计算序列依赖的弯曲能的蒙特卡洛算法同时在M-BCR中定位核小体。 MNase消化,然后衔接子介导的PCR,然后被用来实验性地绘制核小体边界。差异促使开发了一种复制定向(RD)算法,该算法从复制起点开始逐个预测核小体的位置,每个位置都处于弯曲能的最小值。更好的协议证实了体内核小体组装的空间和时间重要性。因此,提出了跨复制叉的耦合的核小体拆卸/重组的逐步模型:解旋酶使DNA解旋可能产生正超螺旋张力,以促进下游核小体的拆卸,这反过来又可以促进上游核小体的重组。后者可包括DNA环形成,然后依次闭合每个组蛋白核心周围的两个DNA臂。染色质构象捕获PCR(包括交联,AluI消化,重新连接和PCR)以3-D形式保留了核心DNA构象,并确认了一个292bp的核小体排除区域(富含A的区域),该区域包含17个连续序列A(17-A)。该区域的上游有19个断点:6个断点直接聚集在17-A的上游,另外13个上游断点中的10个分布在4个核小体核心中。 (1)富含A的长区域可能会从染色质纤维中挤出或形成空环或其他异常的二级结构,这些二级结构可能会在局部受到较大的机械应力而没有组蛋白核心的“保护”; (2)在富含A的区域上游新近重组的核小体核心中的DNA可能在机械应力或停滞的复制过程中丢失组蛋白核心。这些机制可能解释了大多数M-BCR断裂点和至少两种其他由染色体易位引起的疾病,这提示了组蛋白核心作为“均匀曲率控制器”的功能性作用,以使DNA断裂最小化。

著录项

  • 作者

    Tu, Chi-Chiang.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Biomedical.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号