首页> 外文学位 >Coherence in dc SQUID phase qubits.
【24h】

Coherence in dc SQUID phase qubits.

机译:直流SQUID相位量子比特的相干性。

获取原文
获取原文并翻译 | 示例

摘要

I report measurements of energy relaxation and quantum coherence times in an aluminum dc SQUID phase qubit and a niobium dc SQUID phase qubit at 80 mK. In a dc SQUID phase qubit, the energy levels of one Josephson junction are used as qubit states and the rest of the SQUID forms an inductive network to isolate the qubit junction. Noise current from the SQUID's current bias leads is filtered by the network, with the amount of filtering depending on the ratio of the loop inductance to the Josephson inductance of the isolation junction. The isolation unction inductance can be tuned by adjusting the current, and this allows the isolation to be varied in situ. I quantify the isolation by the isolation factor rI which is the ratio of the current noise power in the qubit junction to the total noise current power on its bias leads.; I measured the energy relaxation time T1, the spectroscopic coherence time T*2 and the decay time constant T' of Rabi oscillations in the Al dc SQUID phase qubit AL1 and the Nb dc SQUID phase qubit NBG, which had a gradiometer loop. In particular, I investigated the dependence of T1 on the isolation rI. T1 from the relaxation measurements did not reveal any dependance on the isolation factor rI. For comparison, I found T1 by fitting to the thermally induced background escape rate and found that it depended on rI. However, further investigation suggests that this apparent dependence may be due to a small-noise induced population in |2⟩ so I cannot draw any firm conclusion.; I also measured the spectroscopic coherence time T*2 , Rabi oscillations and the decay constant T' at significantly different isolation factors. Again, I did not observe any dependence of T*2 and T' on rI, suggesting that the main decoherence source in the qubit AL1 was not the noise from the bias current. Similar results were found previously in our group's Nb devices.; I compared T1, T*2 and T' for the qubit AL1 with those for NBG and a niobium dc SQUID phase qubit NB1 and found significant differences in T*2 and T' among the devices but similar T 1 values. If flux noise was dominant, NBG which has a gradiometer loop would have the longest Rabi decay time T'. However, T' for NBG was similar to NB1, a Nb dc SQUID phase qubit without a gradiometer. I found that T' = 28 ns for AL1, the Al dc SQUID phase qubit, and this was more than twice as long as in NBG ( T' ≃ 15 ns) or NB1 (T' ≃ 15 ns). This suggests that materials played an important role in determining the coherence times of the different devices.; Finally, I discuss the possibility of using a Cooper pair box to produce variable coupling between phase qubits. I calculated the effective capacitance of a Cooper pair box as a function of gate voltage. I also calculated the energy levels of a Josephson phase qubit coupled to a Cooper pair box and showed that the energy levels of the phase qubit can be tuned with the coupled Cooper pair box.
机译:我报告了在80 mK的铝dc SQUID相位量子比特和铌dc SQUID相位量子比特中能量弛豫和量子相干时间的测量结果。在直流SQUID相位量子比特中,一个约瑟夫逊结的能级用作量子比特状态,其余SQUID形成一个感应网络来隔离量子比特结。 SQUID的电流偏置导线产生的噪声电流由网络过滤,其过滤量取决于环路电感与隔离结的Josephson电感之比。可以通过调节电流来调整隔离功能的电感,这可以就地改变隔离度。我用隔离系数rI来量化隔离度,隔离系数rI是量子位结中的电流噪声功率与其偏置引线上的总噪声电流功率之比。我测量了Al dc SQUID相量子比特AL1和Nb dc SQUID相量子比特NBG中具有梯度仪环路的能量弛豫时间T1,光谱相干时间T * 2和Rabi振荡的衰减时间常数T'。特别是,我研究了T1对隔离rI的依赖性。弛豫测量的T1没有显示出对隔离因子rI的任何依赖。为了进行比较,我通过拟合热诱导的本底逃逸率发现了T1,并发现它取决于rI。但是,进一步的研究表明,这种明显的依赖性可能是由于| 2〉中的小噪声诱导种群所致,因此我无法得出任何肯定的结论。我还测量了在显着不同的隔离因子下的光谱相干时间T * 2,拉比振荡和衰减常数T'。同样,我没有观察到T * 2和T'对rI的任何依赖性,这表明量子位AL1中的主要退相干源不是来自偏置电流的噪声。以前在我们小组的Nb设备中也发现了类似的结果。我将qubit AL1的T1,T * 2和T'与NBG和铌dc SQUID相位qubit NB1的T1,T * 2和T'进行了比较,发现器件之间的T * 2和T'存在显着差异,但T 1值相似。如果通量噪声占主导地位,则具有梯度计环路的NBG的拉比衰减时间T'最长。但是,NBG的T'类似于NB1,即无梯度计的Nb dc SQUID相位量子比特。我发现,Al dc SQUID相位量子位AL1的T'= 28 ns,是NBG(T'≃ 15 ns)或NB1(T'≃ 15 ns)的两倍多。这表明材料在确定不同器件的相干时间方面起着重要作用。最后,我讨论了使用Cooper对盒在相位量子位之间产生可变耦合的可能性。我计算了库珀对盒的有效电容与栅极电压的关系。我还计算了耦合到库珀对盒的约瑟夫森相位量子位的能级,并表明可以通过耦合库珀对盒来调整相位量子位的能级。

著录项

  • 作者

    Paik, Hanhee.;

  • 作者单位

    University of Maryland, College Park.$bPhysics.;

  • 授予单位 University of Maryland, College Park.$bPhysics.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 288 p.
  • 总页数 288
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号