首页> 外文学位 >Planetary migration, accretion, and atmospheres.
【24h】

Planetary migration, accretion, and atmospheres.

机译:行星迁移,吸积和大气。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation explores three distinct projects in the field of planetary formation and evolution: type I migration, cessation of mass accretion, and the atmospheric dynamics of hot Jupiters. All three of these projects touch on outstanding or unresolved issues in the field. Each attempts to unify analytic and numerical approaches in order to physically motivate solutions while simultaneously probing areas currently inaccessible to purely analytic approaches.; The first section, type I migration, explores the outstanding problem of the rapid inward migration of low mass planets embedded in protoplanetary disks. Analytic estimates of migration predict characteristic timescales that are much shorter then either observed disk lifetimes or theoretical core-accretion formation timescales. If migration is actually as efficient as these analytic estimates predict, planet formation across the observed range of masses and semimajor axis' is difficult. Here I introduce several new formalisms to both allow the disk to adiabatically adjust to the presence of a planet and include the effect of axisymmetric disk self-gravity. I find that these modifications increase migration timescales by approximately 4 times. In addition to these numerical improvements, I present simulations of migration in lower sound-speed regions of the disk on the grounds that self shadowing within the disk could yield substantially cooler gas temperatures then those derived by most irradiated disk models. In such regions the planetary perturbation excites a secondary instability, leading to the formation of vortices. These vortices cause a substantial reduction in the net torque, increasing migration timescales by up to approximately 200 times the analytically predicted rate.; The second section addresses the mechanism for shutting off accretion onto giant planets. According to the conventional sequential accretion scenario, giant planets acquire a majority of their gas in a runaway phase. Conventional mechanisms for stopping this accretion involve either disk dispersal or gap formation. Although mass accretion may eventually be quenched by a global depletion of gas, as in the ease of Uranus and Neptune, such a mechanism is unlikely to have stalled the growth of some known planetary systems which contain relatively low-mass and close-in planets along with more massive and longer period companions. Similarly, the formation of a gap cannot fully explain the decrease in mass accretion. Several groups have shown that, even in the presence of a gap, diffusion allows rapid gas accretion to continue. Here I explore the effect of the growing tidal barrier on the flow within the protoplanetary disk. Using both analytic and numerical approaches I show that accretion rates increases rapidly with the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk thickness. Mass accretion timescales become comparable to observed disk lifetimes. In regions with loco geometric aspect ratios gas accretion is efficiently quenched with relatively low protoplanetary masses. This mechanism is important for determining the gas-giant planets' mass function, the distribution of their masses within multiple planet systems around solar type stars, and for suppressing the emergence of gas-giants around low mass stars.; The final section explores the atmospheric dynamics of short-period gas-giant planets. Ubiquitous among currently observed extrasolar planetary systems these planets receive intense irradiation from their host stars that dominates the energy input into their atmospheres. Characterization of several of these planets through transit observations have revealed information on temperature, structure, and composition. Here we present three-dimensional radiative hydrodynamical simulations of atmospheric circulation on close-in gas giant planets. In contrast to previous Global Climate Models and shallow water algorithms, this method does not assume quasi hydrostatic eq
机译:本文探讨了行星形成和演化领域中的三个不同的项目:I型迁移,停止质量积聚和热木星的大气动力学。所有这三个项目都涉及该领域中悬而未决的问题。每种方法都试图统一分析方法和数值方法,以便从物理上激发解决方案,同时探究目前纯分析方法无法进入的领域。第一部分,I型迁移,探讨了嵌在原行星盘中的低质量行星快速向内迁移的突出问题。迁移的分析估计预测的特征时间尺度比观察到的磁盘寿命或理论岩心积聚形成时间尺度要短得多。如果迁移实际上如这些分析估计所预测的那样有效,则很难在所观察到的质量范围和“半长轴”范围内形成行星。在这里,我介绍了几种新的形式主义,既可以使磁盘绝热地适应行星的存在,又可以包括轴对称磁盘自重的影响。我发现这些修改使迁移时间范围增加了大约4倍。除了这些数值上的改进外,我还提出了在磁盘较低声速区域迁移的模拟,理由是磁盘内部的自遮蔽可能会产生比大多数辐照磁盘模型所推导的气体温度低得多的气体温度。在这样的区域中,行星扰动引起了二次失稳,导致形成了涡旋。这些涡流会导致净转矩的显着降低,从而使迁移时间尺度增加多达分析预测速率的200倍。第二部分介绍了阻止积聚到巨型行星上的机制。根据常规的顺序增生方案,巨型行星在失控阶段会获取大部分气体。阻止这种积聚的常规机制包括盘分散或间隙形成。尽管像天王星和海王星那样,由于质量的增加最终可能会由于全球性的气体消灭而停止,但这种机制不太可能使某些已知行星系统的生长停滞不前,这些行星系统的质量相对较低且近距离行星沿与更庞大,更长期的同伴。同样,间隙的形成不能完全解释质量增加的减少。几组研究表明,即使存在间隙,扩散也会使气体快速积聚继续。在这里,我探讨了不断增长的潮汐屏障对原行星盘内流动的影响。使用分析和数值方法,我都表明吸积率随着原行星的罗氏半径与邦迪半径之比或圆盘厚度的比率而迅速增加。吸积时标变得与观察到的磁盘寿命相当。在具有局部几何长宽比的区域,以相对较低的原行星质量有效地抑制了积气。这种机制对于确定气巨行星的质量功能,在太阳型恒星周围的多个行星系统内的质量分布以及抑制低质量恒星周围的气巨星的出现非常重要。最后一部分探讨了短周期气体巨型行星的大气动力学。在目前观测到的太阳系外行星系统中,这些行星无处不在,它们的宿主恒星受到强烈的辐射,这些辐射主导着进入大气的能量输入。通过运输观测对这些行星中的几个进行了表征,揭示了有关温度,结构和成分的信息。在这里,我们介绍近距离气体巨型行星上大气环流的三维辐射流体动力学模拟。与以前的全球气候模型和浅水算法相比,该方法没有假设拟静水力方程

著录项

  • 作者

    Dobbs-Dixon, Ian M.;

  • 作者单位

    University of California, Santa Cruz.;

  • 授予单位 University of California, Santa Cruz.;
  • 学科 Physics Astronomy and Astrophysics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 222 p.
  • 总页数 222
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 天文学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号