首页> 外文学位 >Dynamics of colloidal and polymeric suspensions via a fluctuating lattice-Boltzmann model.
【24h】

Dynamics of colloidal and polymeric suspensions via a fluctuating lattice-Boltzmann model.

机译:胶体和聚合物悬浮液的动力学通过波动的格子-玻尔兹曼模型。

获取原文
获取原文并翻译 | 示例

摘要

We investigate the dynamic and static properties of polymeric suspensions via a numerical simulation method. This method couples Newtonian mechanics of solid phase suspended particles with a fluctuating lattice-Boltzmann fluid. This results in the solution of the Navier-Stokes equation, including thermal fluctuations and hydrodynamic interactions for the solid particles. The coupling can be achieved either through boundary conditions for a finite sized particle or through a Stokes-like frictional coupling for point particles. The frictional coupling procedure is a very efficient approach due to the use of point particles which take up much smaller volumes. This in turn results in simulations of far fewer lattice nodes, while retaining essential hydrodynamic features for dynamics of polymers. This approach has enabled us to simulate polymer chains with more than 1000 segments, including hydrodynamic interactions. This discretization is nearly an order of magnitude higher than what is feasible using traditional Brownian dynamics methods.; The fluctuating lattice-Boltzmann method is presented for both colloidal and polymeric suspensions. A verification of the fluctuations for the case of colloidal finite sized particles is presented as a test case. However, the main theme of this thesis is the simulations of dilute polymer solutions.; The hydrodynamic interactions play an important role in these systems and the effect of these interactions is the focus of this study. In unbounded geometries, the effects lead to important differences in the scaling of the polymer properties, such as the radius of gyration and diffusion coefficient, with the linear length of the polymer. In bounded geometries the hydrodynamic interactions can result in a transverse migration. In unidirectional shearing flow or external fields, this leads to a nonuniform concentration of the polymer across the lateral axis. In both cases although the underlying phenomenon is the hydrodynamic interactions, the motion created by these two driving forces are distinctly different.; The magnitude and direction of the migration can be manipulated using a combination of hydrodynamic and external fields. The migration observed in this study also affects macroscopic transport properties of the polymer, such as dispersion and segregation velocities, due to changes in the center of mass distribution. The migration under all flow conditions depends on the dimensionless ratio between the channel size and the polymer size. Therefore, separation of polymers based on chain length is possible as long as the shear rate across the channel varies. Our results for combined flows, when compared with recent experiments, also indicate that hydrodynamic interactions, usually neglected in the electric field driven motion of polymers, may only be partially screened.
机译:我们通过数值模拟方法研究了聚合物悬浮液的动态和静态特性。这种方法将固相悬浮颗粒的牛顿力学与波动的格子-玻尔兹曼流体耦合在一起。这导致了Navier-Stokes方程的解,包括固体颗粒的热涨落和流体动力相互作用。耦合可以通过有限尺寸粒子的边界条件来实现,也可以通过点粒子的Stokes式摩擦耦合来实现。摩擦耦合过程是一种非常有效的方法,这是由于使用了体积小得多的点粒子。反过来,这导致模拟了少得多的晶格节点,同时保留了聚合物动力学的基本流体动力学特征。这种方法使我们能够模拟具有1000多个片段的聚合物链,包括流体动力学相互作用。与传统的布朗动力学方法相比,这种离散几乎高出一个数量级。提出了用于胶体和聚合物悬浮液的波动晶格-玻尔兹曼方法。胶体有限尺寸颗粒情况的波动验证作为测试用例。然而,本文的主题是稀聚合物溶液的模拟。流体动力相互作用在这些系统中起着重要的作用,这些相互作用的影响是本研究的重点。在无边界的几何形状中,这些影响会导致聚合物性能的缩放比例(例如回转半径和扩散系数)随聚合物的线性长度发生重大差异。在有限的几何形状中,流体动力相互作用会导致横向迁移。在单向剪切流或外部场中,这会导致横轴上的聚合物浓度不均匀。在这两种情况下,尽管潜在的现象是流体动力相互作用,但这两种驱动力产生的运动明显不同。可以使用流体动力场和外部场的组合来控制迁移的幅度和方向。由于质量分布中心的变化,在这项研究中观察到的迁移也影响了聚合物的宏观传输性能,例如分散和离析速度。在所有流动条件下的迁移取决于通道尺寸和聚合物尺寸之间的无因次比。因此,只要跨通道的剪切速率变化,就可以基于链长分离聚合物。与最近的实验相比,我们的混合流结果还表明,通常在电场驱动的聚合物运动中被忽略的流体动力学相互作用只能被部分屏蔽。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号