首页> 外文学位 >Electron transport across molecular junctions: Effect of junction geometry and molecule functionality.
【24h】

Electron transport across molecular junctions: Effect of junction geometry and molecule functionality.

机译:电子跨分子结的传输:结几何形状和分子功能的影响。

获取原文
获取原文并翻译 | 示例

摘要

Molecular electronic devices provide an alternative to the current semiconductor based electronic devices enabling a higher device density on integrated circuits. Despite extensive experimental characterization studies, the relationship between the junction structure and the electron transport mechanisms is still not clear. The aim of this dissertation was therefore, to examine the effects of variations in the design parameters and chemical functionality on the device electrical characteristics by using density functional theory and non-equilibrium Green's function techniques.; Electronic structure methods probe the interfacial electronic structure and associated electron transport mechanism and can therefore, aid in guiding device design. The intermolecular interactions and orientations of the adsorbed molecular junctions vary with changes in structural parameters such as surface coverage and electrode spacing. These changes lead to shifting of the molecular energy states with respect to the electrode Fermi levels resulting in current flow variations. The electron transport within Au(111)-octane dithiolate-Au(111) junction occurs via conduction through occupied molecular energy states for low molecular coverage and moderate electrode spacing. The electron transport mechanisms also depend on the chemical functionality included in the molecular junction. The conduction through tunable molecules containing delocalized stilbene substituted octahydrosilsesquioxane (POSS) core is examined for potential application as rectifying devices. Both occupied and unoccupied hybrid molecular energy states emerge for Au(111)-stilbene substituted POSS-Au(111) system, which are accessible at biases equal or higher than the range of 2.5 to 3 V. Thus, the electron transport characteristics are sensitive to the molecular configuration and position of substitution, which can be altered depending on the electrical behavior required. Devices exhibiting negative differential resistance (NDR) are employed for memory storage applications. A ruthenium metal ion attached to delocalized terpyridyl ligands and bonded to Pt(111) electrodes demonstrates NDR behavior with a peak to valley ratio in the range 8.5 to 9.5. The electrons are transmitted through unoccupied and delocalized molecular states close to the metal Fermi level such that under high enough bias, these molecular states are inaccessible due to coupling changes within the junction.; In conclusion, the electrical characteristics for a molecular device are dictated by the chemical functionality of the molecule bonded to the metal electrodes and the substituents attached. The electron flow can be further modified by variations in the device structure parameters and the molecular configurations, which realign the molecular energy states with respect to the reference metal Fermi levels.
机译:分子电子设备提供了当前基于半导体的电子设备的替代方案,从而使集成电路上的设备密度更高。尽管进行了广泛的实验表征研究,结结构和电子传输机制之间的关系仍然不清楚。因此,本论文的目的是利用密度泛函理论和非平衡格林函数技术研究设计参数和化学功能变化对器件电学特性的影响。电子结构方法探讨了界面电子结构和相关的电子传输机制,因此可以帮助指导装置设计。分子间相互作用和吸附分子连接的方向随结构参数(例如表面覆盖率和电极间距)的变化而变化。这些变化导致分子能态相对于电极费米能级的移动,从而导致电流变化。 Au(111)-辛烷二硫酸酯-Au(111)结内的电子传输通过占据分子能量状态的传导进行,以实现低分子覆盖率和适度的电极间距。电子传输机理还取决于分子结中包含的化学官能度。通过包含离域的取代的八氢倍半硅氧烷(POSS)核心的可调分子的传导被检查作为整流装置的潜在应用。 Au(111)-二苯乙烯取代的POSS-Au(111)系统同时出现了占据和未占据的杂化分子能态,它们在等于或高于2.5到3 V的偏压下均可访问。因此,电子传输特性很敏感取代的分子构型和位置,可以根据所需的电性能进行改变。具有负差分电阻(NDR)的器件用于存储器存储应用。附着到离域的吡啶基配体并结合到Pt(111)电极上的钌金属离子表现出NDR行为,其峰谷比在8.5至9.5范围内。电子通过接近金属费米能级的未占据和离域的分子态传输,因此在足够高的偏压下,由于结内的耦合变化,这些分子态不可访问。总之,分子器件的电学特性取决于键合到金属电极上的分子的化学官能度和所连接的取代基。可以通过改变器件结构参数和分子构型来进一步改变电子流,这些变化使分子能态相对于参考金属费米能级重新排列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号