首页> 外文学位 >Interaction of indoor air pollutants with titanium dioxide catalyst coatings studied by chemical ionization mass spectrometry.
【24h】

Interaction of indoor air pollutants with titanium dioxide catalyst coatings studied by chemical ionization mass spectrometry.

机译:通过化学电离质谱研究室内空气污染物与二氧化钛催化剂涂层的相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Preventing the build-up of indoor pollutants represents an emerging goal in environmental chemistry. Heterogeneous catalysis provides an attractive method of remediating indoor air pollution, but optimization through rational catalyst design requires a detailed understanding of the catalytic surface and surface-pollutant interactions. In this work, a chemical ionization mass spectrometry (CIMS) system was built to study the interaction of acetone, a common indoor air pollutant, with Degussa P25 TiO2, an inexpensive catalyst widely used to degrade volatile organic compounds into carbon dioxide and water. While employing acetone partial pressures commonly found indoors, experiments were carried out in the presence and absence of UV light to isolate thermal reactivity from photochemical pathways, and deconvolute non-reactive and reactive thermal binding processes.; Equilibrium and dynamic experiments carried out at room temperature were used to determine the uptake coefficient and the adsorption free energy for acetone on Degussa P25. Equilibrium binding constants, reported for temperatures between 300 and 400 K, provide adsorption enthalpies and entropies. A discussion of the applicability of adsorption models based on statistical thermodynamics is included.; We have also studied the adsorption and photochemistry of acetone and several possible oxidation and condensation products that may be formed during the adsorption and/or the photocatalytic degradation of acetone on titanium dioxide catalysts. We report non-reactive uptake coefficients for acetone, formic acid, acetic acid, mesityl oxide and diacetone alcohol, as well as results from photochemical studies. We quantify, on a per-molecule basis, the room-temperature photocatalytic conversion of the species under investigation to CO2 and related oxidation products. The data presented here suggests that catalytic surfaces that enhance formate and acetate production from acetone precursors are likely to facilitate the photocatalytic remediation of acetone in indoor environments at room temperature.; This work provides new physical parameters for the interaction of an actual indoor air pollutant with a well-known catalyst. Taken together, the results of this work may be used to guide rational catalyst design, leading to next-generation materials that maximize desired pollutant-catalyst interactions. As such, it contributes to current efforts to improve the quality of indoor air through heterogeneous catalysis remediation strategies.
机译:防止室内污染物的积累代表了环境化学中的一个新兴目标。非均相催化提供了一种有吸引力的补救室内空气污染的方法,但是通过合理的催化剂设计进行优化需要对催化表面和表面与污染物之间的相互作用有详细的了解。在这项工作中,建立了化学电离质谱(CIMS)系统,以研究常见室内空气污染物丙酮与Degussa P25 TiO2(一种广泛用于将挥发性有机化合物降解为二氧化碳和水的廉价催化剂)之间的相互作用。当使用室内普遍存在的丙酮分压时,在有无紫外线的情况下进行实验,以将热反应性与光化学路径隔离开来,并解卷积非反应性和反应性热结合过程。在室温下进行的平衡和动态实验用于确定丙酮在Degussa P25上的吸收系数和吸附自由能。据报道,在300至400 K之间的温度下,平衡结合常数提供了吸附焓和熵。讨论了基于统计热力学的吸附模型的适用性。我们还研究了丙酮的吸附和光化学,以及丙酮在二氧化钛催化剂上的吸附和/或光催化降解过程中可能形成的几种可能的氧化和缩合产物。我们报告了丙酮,甲酸,乙酸,异亚丙基丙酮和双丙酮醇的非反应性吸收系数,以及光化学研究的结果。我们以每分子为基础,将所研究物种的室温光催化转化转化为二氧化碳和相关的氧化产物。此处提供的数据表明,提高丙酮前体的甲酸盐和乙酸盐产量的催化表面很可能促进室温下室内环境中丙酮的光催化修复。这项工作为实际室内空气污染物与众所周知的催化剂的相互作用提供了新的物理参数。综上所述,这项工作的结果可用于指导合理的催化剂设计,从而使下一代材料最大化所需的污染物-催化剂相互作用。因此,它有助于通过非均相催化修复策略改善室内空气质量的当前努力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号