首页> 外文学位 >Mechanics and quantum dots: Strain size effects and 'reverse coupling'.
【24h】

Mechanics and quantum dots: Strain size effects and 'reverse coupling'.

机译:力学和量子点:应变尺寸效应和“反向耦合”。

获取原文
获取原文并翻译 | 示例

摘要

Quantum dots are nanoscale dusters of (typically) semiconductor materials and due to quantum mechanical size effects exhibit unusual mechanical, electronic and optical behavior. While several technological barriers remain, they are often considered as basis for several revolutionary nanoelectronic devices and applications. From a scientific viewpoint, they are a fertile laboratory to test fundamental quantum and solid mechanics effects and associated theories.; In this dissertation we explore two issues related to the coupling of mechanical strain and quantum mechanical behavior: (1) Size-dependency of strain at the nanoscale and coupling to electronic structure: Firstly, in the isotropic case, based on the physical mechanisms of nonlocal interactions, we herein derive new (closed-form) scaling formulae for strain in embedded lattice mismatched spherical quantum dots. We finally extend our results to cubic anisotropy and arbitrary shape. We attempt to assess the qualitative and quantitative effects on the electronic band structure of InAs-GaAs quantum dot system. (2) Quantum Field Induced Strain in Nanostructures : The second issue leads us to some tantalizing conclusions. We investigate an unusual size-dependent physical phenomenon wherein mechanical strain can be induced in small quantum dots (1-3 nm) in the complete absence of external stress, predicated purely on quantum mechanical confinement effects. While the phenomenon of strain impact on electronic structure in quantum dots is well known and studied (and is the focus of the first few chapters of this dissertation), this "reverse coupling" appears to be largely ignored or buried in all-numerical ab initio calculations. A modified multiband envelope function approach is used to model this phenomenon thus providing a transparent scheme to identify its occurrence. Further, we have used our developed model to quantitatively predict the electronic structure and the induced strain field for colloidal Si and GaAs quantum dots. After due interpretation of the "quantum confinement induced strain" in terms of acoustic polarons, we confirm our model and predictions by detailed ab initio calculations. The present work may potentially provide a basis for next generation Quantum Electromechanical Systems (QEMs).
机译:量子点是(通常)半导体材料的纳米级除尘器,由于量子机械尺寸效应,其表现出不同寻常的机械,电子和光学性能。尽管仍然存在一些技术障碍,但它们通常被认为是几种革命性的纳米电子器件和应用的基础。从科学的角度来看,它们是测试基础量子和固体力学效应及相关理论的沃土实验室。在本文中,我们探讨了与机械应变和量子力学行为耦合有关的两个问题:(1)纳米尺度上应变的尺寸依赖性以及与电子结构的耦合:首先,在各向同性的情况下,基于非局部的物理机理相互作用,我们在这里导出嵌入式晶格失配球形量子点中应变的新(封闭形式)缩放公式。最后,我们将结果扩展到立方各向异性和任意形状。我们试图评估对InAs-GaAs量子点系统电子能带结构的定性和定量影响。 (2)纳米结构中的量子场诱导应变:第二个问题使我们得出了一些诱人的结论。我们研究了一种不寻常的尺寸依赖性物理现象,其中在完全不存在外部应力的情况下,可以在小的量子点(1-3 nm)中诱导机械应变,这完全是基于量子力学的限制效应。虽然应变对量子点中的电子结构的影响现象是众所周知的,并且已得到研究(并且是本论文前几章的重点),但这种“反向耦合”似乎在很大程度上被忽略或埋在全数值的从头算中计算。修改后的多频带包络函数方法用于对该现象进行建模,从而提供了一种透明的方案来识别其出现。此外,我们已经使用我们开发的模型来定量预测胶体Si和GaAs量子点的电子结构和感应应变场。在根据声极化子对“量子限制引起的应变”进行了适当的解释之后,我们通过详细的从头算计算来确认我们的模型和预测。本工作可能为下一代量子机电系统(QEM)提供基础。

著录项

  • 作者

    Zhang, Xinyuan.;

  • 作者单位

    University of Houston.;

  • 授予单位 University of Houston.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号