首页> 外文学位 >Robust adaptive control for Unmanned Aerial Vehicles.
【24h】

Robust adaptive control for Unmanned Aerial Vehicles.

机译:无人机的鲁棒自适应控制。

获取原文
获取原文并翻译 | 示例

摘要

The objective of meeting higher endurance requirements remains a challenging task for any type and size of Unmanned Aerial Vehicles (UAVs). According to recent research studies significant energy savings can be realized through utilization of thermal currents. The navigation strategies followed across thermal regions, however, are based on rather intuitive assessments of remote pilots and lack any systematic path planning approaches. Various methods to enhance the autonomy of UAVs in soaring applications are investigated while seeking guarantees for flight performance improvements.; The dynamics of the aircraft, small UAVs in particular, are affected by the environmental conditions, whereas unmodeled dynamics possibly become significant during aggressive flight maneuvers. Besides, the demanded control inputs might have a magnitude range beyond the limits dictated by the control surface actuators. The consequences of ignoring these issues can be catastrophic. Supporting this claim NASA Dryden Flight Research Center reports considerable performance degradation and even loss of stability in autonomous soaring flight tests with the subsequent risk of an aircraft crash. The existing control schemes are concluded to suffer from limited performance.; Considering the aircraft dynamics and the thermal characteristics we define a vehicle-specific trajectory optimization problem to achieve increased cross-country speed and extended range of flight. In an environment with geographically dispersed set of thermals of possibly limited lifespan, we identify the similarities to the Vehicle Routing Problem (VRP) and provide both exact and approximate guidance algorithms for the navigation of automated UAVs. An additional stochastic approach is used to quantify the performance losses due to incorrect thermal data while dealing with random gust disturbances and onboard sensor measurement inaccuracies.; One of the main contributions of this research is a novel adaptive control design with anti-windup compensation. Our analysis on the indirect adaptive scheme reveals that the perturbation terms due to parameter errors do not cause any unbounded signals in the closed-loop. The stability of the adaptive system is established, and the properties of the proposed control scheme are demonstrated through simulations on a UAV model with input magnitude saturation constraints. The robust adaptive control design is further developed to extend our results to rate-saturated systems.
机译:对于任何类型和大小的无人飞行器(UAV),满足更高耐用性要求的目标仍然是一项艰巨的任务。根据最近的研究,可以通过利用热电流实现显着的节能。但是,在整个热区中遵循的导航策略是基于对远程驾驶员的相当直观的评估,并且缺乏任何系统的路径规划方法。在寻求保证飞行性能改善的同时,研究了各种在飞升的应用中增强无人机自主性的方法。飞机的动力,尤其是小型无人机的动力,受到环境条件的影响,而未建模的动力在激进的飞行演习中可能变得很重要。此外,所需的控制输入的幅度范围可能超出控制表面执行器规定的极限。忽略这些问题的后果可能是灾难性的。支持这一说法的美国国家航空航天局Dryden飞行研究中心报告说,在自动高空飞行测试中,性能显着下降,甚至失去稳定性,并随后导致飞机坠毁。结论是现有控制方案的性能有限。考虑到飞机动力学和热特性,我们定义了特定于飞机的轨迹优化问题,以实现提高的越野速度和扩大的飞行范围。在环境中可能存在有限的使用寿命的地热分布中,我们确定了与车辆路径问题(VRP)的相似之处,并提供了用于自动UAV导航的精确和近似指导算法。一种额外的随机方法用于量化由于不正确的热数据而导致的性能损失,同时处理随机的阵风干扰和机载传感器测量的不准确性。这项研究的主要贡献之一是具有抗饱和补偿的新型自适应控制设计。我们对间接自适应方案的分析表明,由于参数错误而引起的扰动项不会在闭环中引起任何无界信号。建立了自适应系统的稳定性,并通过在具有输入幅度饱和约束的无人机模型上进行仿真,证明了所提出的控制方案的性质。鲁棒的自适应控制设计得到了进一步发展,以将我们的结果扩展到速率饱和系统。

著录项

  • 作者

    Kahveci, Nazli E.;

  • 作者单位

    University of Southern California.$bElectrical Engineering: Doctor of Philosophy.;

  • 授予单位 University of Southern California.$bElectrical Engineering: Doctor of Philosophy.;
  • 学科 Engineering Aerospace.; Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 206 p.
  • 总页数 206
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号