首页> 外文学位 >Sensitivity, non-equilibrium thermodynamic and control analyses of insulin metabolic signaling pathways.
【24h】

Sensitivity, non-equilibrium thermodynamic and control analyses of insulin metabolic signaling pathways.

机译:胰岛素代谢信号通路的敏感性,非平衡热力学和对照分析。

获取原文
获取原文并翻译 | 示例

摘要

The transportation of glucose, the primary energy source of all eukaryotic cells, from the bloodstream to the cells is catalyzed by a family of glucose transporters (GLUTs), among which GLUT4 is insulin stimulated and regulated. To study the insulin-stimulated glucose transport, we analyze the hybrid metabolic and signaling pathway models constructed by Sedaghat, et al. by applying multiple strategies based on dynamic sensitivity analysis, concentration control analysis, non-equilibrium thermodynamics, and nonlinear dynamics. In dynamic sensitivity analysis, we have calculated the time-dependent sensitivities of the concentration of the membrane GLUT4 with respect to all the reaction parameters (reaction rate constants and initial concentrations of the effectors). The roles of feedbacks are investigated by using dynamic sensitivities. In addition, the integrated sensitivities of the membrane GLUT4 have been used to rank the accumulated influence of each reaction parameter on the membrane GLUT4. Results are consistent with experimental facts and predictions of drug targets in the literature. Furthermore, a strategy is developed using dynamic concentration and sensitivity analyses to control certain outputs of the insulin pathways. The objective is to enhance the accumulated action of the membrane GLUT4 for a fixed amount of insulin input.; In the application of non-equilibrium thermodynamics, we calculate the fluxes, chemical affinities, and energy dissipated rates associated with each of the reaction steps of the pathways. The flux and chemical affinity associated with the GLUT4 translocation to the plasma membrane show clear sign of backflow, after the insulin application is suddenly switched off. This backflow results in the decrease in the concentration of membrane GLUT4, thus the reduction of glucose transport. Stimulated by these results, we have carried out a study of insulin dosage delivery aimed at enhancing the duration of the high concentration period of membrane GLUT4, that is, increasing insulin efficiency using various insulin input functions. Negative feedback and/or delay often cause oscillatory behaviors of a network system. This phenomenon reveals itself in the present insulin model as well. Nonlinear dynamical analysis and power spectra have been applied to the study of the complex oscillations associated with effectors concentrations.
机译:葡萄糖是所有真核细胞的主要能源,从血流到细胞的运输是由一系列葡萄糖转运蛋白(GLUT)催化的,其中GLUT4受胰岛素刺激和调节。为了研究胰岛素刺激的葡萄糖转运,我们分析了Sedaghat等人构建的混合代谢和信号通路模型。通过应用基于动态灵敏度分析,浓度控制分析,非平衡热力学和非线性动力学的多种策略。在动态灵敏度分析中,我们已经计算了膜GLUT4的浓度相对于所有反应参数(反应速率常数和效应子的初始浓度)随时间变化的灵敏度。通过使用动态敏感度来研究反馈的作用。另外,已经使用膜GLUT4的综合灵敏度来对每个反应参数对膜GLUT4的累积影响进行排名。结果与实验事实和文献中药物靶标的预测相符。此外,使用动态浓度和敏感性分析来开发策略以控制胰岛素途径的某些输出。目的是针对固定量的胰岛素输入来增强膜GLUT4的累积作用。在非平衡热力学的应用中,我们计算了与路径的每个反应步骤相关的通量,化学亲和力和能量耗散率。在突然关闭胰岛素应用后,与GLUT4易位至质膜相关的通量和化学亲和力显示出明显的回流迹象。这种回流导致膜GLUT4浓度降低,从而减少了葡萄糖转运。受这些结果的刺激,我们进行了胰岛素剂量输送的研究,旨在延长膜GLUT4的高浓度期的持续时间,即使用各种胰岛素输入功能提高胰岛素效率。负反馈和/或延迟通常会引起网络系统的振荡行为。这种现象在当前的胰岛素模型中也显示出来。非线性动力学分析和功率谱已被用于研究与效应物浓度有关的复杂振荡。

著录项

  • 作者

    Liu, Ensheng.;

  • 作者单位

    Drexel University.;

  • 授予单位 Drexel University.;
  • 学科 Biophysics General.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号